「javanio」java nio

博主:adminadmin 2022-12-15 05:57:06 72

本篇文章给大家谈谈javanio,以及java nio对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

Java中nio与普通io有什么优势?

面向流与面向缓冲

Java NIO和IO之间第一个最大的区别是,IO是面向流的,NIO是面向缓冲区的。 Java IO面向流意味着每次从流中读一个或多个字节,直至读取所有字节,它们没有被缓存在任何地方。此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的数据,需要先将它缓存到一个缓冲区。 Java NIO的缓冲导向方法略有不同。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所有您需要处理的数据。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。

阻塞与非阻塞IO

Java IO的各种流是阻塞的。这意味着,当一个线程调用read() 或 write()时,该线程被阻塞,直到有一些数据被读取,或数据完全写入。该线程在此期间不能再干任何事情了。 Java NIO的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞IO的空闲时间用于在其它通道上执行IO操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。

选择器(Selectors)

Java NIO的选择器允许一个单独的线程来监视多个输入通道,你可以注册多个通道使用一个选择器,然后使用一个单独的线程来“选择”通道:这些通道里已经有可以处理的输入,或者选择已准备写入的通道。这种选择机制,使得一个单独的线程很容易来管理多个通道。

NIO和IO如何影响应用程序的设计

无论您选择IO或NIO工具箱,可能会影响您应用程序设计的以下几个方面:

1.对NIO或IO类的API调用。

2.数据处理。

3.用来处理数据的线程数。

API调用

当然,使用NIO的API调用时看起来与使用IO时有所不同,但这并不意外,因为并不是仅从一个InputStream逐字节读取,而是数据必须先读入缓冲区再处理。

数据处理

使用纯粹的NIO设计相较IO设计,数据处理也受到影响。

java nio和数组有什么区别

一. 介绍NIO

NIO包(java.nio.*)引入了四个关键的抽象数据类型,它们共同解决传统的I/O类中的一些问题。

1. Buffer:它是包含数据且用于读写的线形表结构。其中还提供了一个特殊类用于内存映射文件的I/O操作。

2. Charset:它提供Unicode字符串影射到字节序列以及逆影射的操作。

3. Channels:包含socket,file和pipe三种管道,它实际上是双向交流的通道。

4. Selector:它将多元异步I/O操作集中到一个或多个线程中(它可以被看成是Unix中select()函数或Win32中WaitForSingleEvent()函数的面向对象版本)。

二. 回顾传统

在介绍NIO之前,有必要了解传统的I/O操作的方式。以网络应用为例,传统方式需要监听一个ServerSocket,接受请求的连接为其提供服务(服务通常包括了处理请求并发送响应)图一是服务器的生命周期图,其中标有粗黑线条的部分表明会发生I/O阻塞。

图一

可以分析创建服务器的每个具体步骤。首先创建ServerSocket

ServerSocket server=new ServerSocket(10000);

然后接受新的连接请求

Socket newConnection=server.accept();

对于accept方法的调用将造成阻塞,直到ServerSocket接受到一个连接请求为止。一旦连接请求被接受,服务器可以读客户socket中的请求。

InputStream in = newConnection.getInputStream();

InputStreamReader reader = new InputStreamReader(in);

BufferedReader buffer = new BufferedReader(reader);

Request request = new Request();

while(!request.isComplete()) {

String line = buffer.readLine();

request.addLine(line);

}

这样的操作有两个问题,首先BufferedReader类的readLine()方法在其缓冲区未满时会造成线程阻塞,只有一定数据填满了缓冲区或者客户关闭了套接字,方法才会返回。其次,它回产生大量的垃圾,BufferedReader创建了缓冲区来从客户套接字读入数据,但是同样创建了一些字符串存储这些数据。虽然BufferedReader内部提供了StringBuffer处理这一问题,但是所有的String很快变成了垃圾需要回收。

同样的问题在发送响应代码中也存在

Response response = request.generateResponse();

OutputStream out = newConnection.getOutputStream();

InputStream in = response.getInputStream();

int ch;

while(-1 != (ch = in.read())) {

out.write(ch);

}

newConnection.close();

类似的,读写操作被阻塞而且向流中一次写入一个字符会造成效率低下,所以应该使用缓冲区,但是一旦使用缓冲,流又会产生更多的垃圾。

传统的解决方法

通常在Java中处理阻塞I/O要用到线程(大量的线程)。一般是实现一个线程池用来处理请求,如图二

图二

线程使得服务器可以处理多个连接,但是它们也同样引发了许多问题。每个线程拥有自己的栈空间并且占用一些CPU时间,耗费很大,而且很多时间是浪费在阻塞的I/O操作上,没有有效的利用CPU。

三. 新I/O

1. Buffer

传统的I/O不断的浪费对象资源(通常是String)。新I/O通过使用Buffer读写数据避免了资源浪费。Buffer对象是线性的,有序的数据集合,它根据其类别只包含唯一的数据类型。

java.nio.Buffer 类描述

java.nio.ByteBuffer 包含字节类型。 可以从ReadableByteChannel中读在 WritableByteChannel中写

java.nio.MappedByteBuffer 包含字节类型,直接在内存某一区域映射

java.nio.CharBuffer 包含字符类型,不能写入通道

java.nio.DoubleBuffer 包含double类型,不能写入通道

java.nio.FloatBuffer 包含float类型

java.nio.IntBuffer 包含int类型

java.nio.LongBuffer 包含long类型

java.nio.ShortBuffer 包含short类型

可以通过调用allocate(int capacity)方法或者allocateDirect(int capacity)方法分配一个Buffer。特别的,你可以创建MappedBytesBuffer通过调用FileChannel.map(int mode,long position,int size)。直接(direct)buffer在内存中分配一段连续的块并使用本地访问方法读写数据。非直接(nondirect)buffer通过使用Java中的数组访问代码读写数据。有时候必须使用非直接缓冲例如使用任何的wrap方法(如ByteBuffer.wrap(byte[]))在Java数组基础上创建buffer。

2. 字符编码

向ByteBuffer中存放数据涉及到两个问题:字节的顺序和字符转换。ByteBuffer内部通过ByteOrder类处理了字节顺序问题,但是并没有处理字符转换。事实上,ByteBuffer没有提供方法读写String。

Java.nio.charset.Charset处理了字符转换问题。它通过构造CharsetEncoder和CharsetDecoder将字符序列转换成字节和逆转换。

3. 通道(Channel)

你可能注意到现有的java.io类中没有一个能够读写Buffer类型,所以NIO中提供了Channel类来读写Buffer。通道可以认为是一种连接,可以是到特定设备,程序或者是网络的连接。通道的类等级结构图如下

图三

图中ReadableByteChannel和WritableByteChannel分别用于读写。

GatheringByteChannel可以从使用一次将多个Buffer中的数据写入通道,相反的,ScatteringByteChannel则可以一次将数据从通道读入多个Buffer中。你还可以设置通道使其为阻塞或非阻塞I/O操作服务。

为了使通道能够同传统I/O类相容,Channel类提供了静态方法创建Stream或Reader

4. Selector

在过去的阻塞I/O中,我们一般知道什么时候可以向stream中读或写,因为方法调用直到stream准备好时返回。但是使用非阻塞通道,我们需要一些方法来知道什么时候通道准备好了。在NIO包中,设计Selector就是为了这个目的。SelectableChannel可以注册特定的事件,而不是在事件发生时通知应用,通道跟踪事件。然后,当应用调用Selector上的任意一个selection方法时,它查看注册了的通道看是否有任何感兴趣的事件发生。图四是selector和两个已注册的通道的例子

图四

并不是所有的通道都支持所有的操作。SelectionKey类定义了所有可能的操作位,将要用两次。首先,当应用调用SelectableChannel.register(Selector sel,int op)方法注册通道时,它将所需操作作为第二个参数传递到方法中。然后,一旦SelectionKey被选中了,SelectionKey的readyOps()方法返回所有通道支持操作的数位的和。SelectableChannel的validOps方法返回每个通道允许的操作。注册通道不支持的操作将引发IllegalArgumentException异常。下表列出了SelectableChannel子类所支持的操作。

ServerSocketChannel OP_ACCEPT

SocketChannel OP_CONNECT, OP_READ, OP_WRITE

DatagramChannel OP_READ, OP_WRITE

Pipe.SourceChannel OP_READ

Pipe.SinkChannel OP_WRITE

四. 举例说明

1. 简单网页内容下载

这个例子非常简单,类SocketChannelReader使用SocketChannel来下载特定网页的HTML内容。

package examples.nio;

import java.nio.ByteBuffer;

import java.nio.channels.SocketChannel;

import java.nio.charset.Charset;

import java.net.InetSocketAddress;

import java.io.IOException;

public class SocketChannelReader{

private Charset charset=Charset.forName("UTF-8");//创建UTF-8字符集

private SocketChannel channel;

public void getHTMLContent(){

try{

connect();

sendRequest();

readResponse();

}catch(IOException e){

System.err.println(e.toString());

}finally{

if(channel!=null){

try{

channel.close();

}catch(IOException e){}

}

}

}

private void connect()throws IOException{//连接到CSDN

InetSocketAddress socketAddress=

new InetSocketAddress("",80/);

channel=SocketChannel.open(socketAddress);

//使用工厂方法open创建一个channel并将它连接到指定地址上

//相当与SocketChannel.open().connect(socketAddress);调用

}

private void sendRequest()throws IOException{

channel.write(charset.encode("GET "

+"/document"

+"\r\n\r\n"));//发送GET请求到CSDN的文档中心

//使用channel.write方法,它需要CharByte类型的参数,使用

//Charset.encode(String)方法转换字符串。

}

private void readResponse()throws IOException{//读取应答

ByteBuffer buffer=ByteBuffer.allocate(1024);//创建1024字节的缓冲

while(channel.read(buffer)!=-1){

buffer.flip();//flip方法在读缓冲区字节操作之前调用。

System.out.println(charset.decode(buffer));

//使用Charset.decode方法将字节转换为字符串

buffer.clear();//清空缓冲

}

}

public static void main(String [] args){

new SocketChannelReader().getHTMLContent();

}

2. 简单的加法服务器和客户机

服务器代码

package examples.nio;

import java.nio.ByteBuffer;

import java.nio.IntBuffer;

import java.nio.channels.ServerSocketChannel;

import java.nio.channels.SocketChannel;

import java.net.InetSocketAddress;

import java.io.IOException;

/**

* SumServer.java

*

*

* Created: Thu Nov 06 11:41:52 2003

*

* @author starchu1981

* @version 1.0

*/

public class SumServer {

private ByteBuffer _buffer=ByteBuffer.allocate(8);

private IntBuffer _intBuffer=_buffer.asIntBuffer();

private SocketChannel _clientChannel=null;

private ServerSocketChannel _serverChannel=null;

public void start(){

try{

openChannel();

waitForConnection();

}catch(IOException e){

System.err.println(e.toString());

}

}

private void openChannel()throws IOException{

_serverChannel=ServerSocketChannel.open();

_serverChannel.socket().bind(new InetSocketAddress(10000));

System.out.println("服务器通道已经打开");

}

private void waitForConnection()throws IOException{

while(true){

_clientChannel=_serverChannel.accept();

if(_clientChannel!=null){

System.out.println("新的连接加入");

processRequest();

_clientChannel.close();

}

}

}

private void processRequest()throws IOException{

_buffer.clear();

_clientChannel.read(_buffer);

int result=_intBuffer.get(0)+_intBuffer.get(1);

_buffer.flip();

_buffer.clear();

_intBuffer.put(0,result);

_clientChannel.write(_buffer);

}

public static void main(String [] args){

new SumServer().start();

}

} // SumServer

客户代码

package examples.nio;

import java.nio.ByteBuffer;

import java.nio.IntBuffer;

import java.nio.channels.SocketChannel;

import java.net.InetSocketAddress;

import java.io.IOException;

/**

* SumClient.java

*

*

* Created: Thu Nov 06 11:26:06 2003

*

* @author starchu1981

* @version 1.0

*/

public class SumClient {

private ByteBuffer _buffer=ByteBuffer.allocate(8);

private IntBuffer _intBuffer;

private SocketChannel _channel;

public SumClient() {

_intBuffer=_buffer.asIntBuffer();

} // SumClient constructor

public int getSum(int first,int second){

int result=0;

try{

_channel=connect();

sendSumRequest(first,second);

result=receiveResponse();

}catch(IOException e){System.err.println(e.toString());

}finally{

if(_channel!=null){

try{

_channel.close();

}catch(IOException e){}

}

}

return result;

}

private SocketChannel connect()throws IOException{

InetSocketAddress socketAddress=

new InetSocketAddress("localhost",10000);

return SocketChannel.open(socketAddress);

}

private void sendSumRequest(int first,int second)throws IOException{

_buffer.clear();

_intBuffer.put(0,first);

_intBuffer.put(1,second);

_channel.write(_buffer);

System.out.println("发送加法请求 "+first+"+"+second);

}

private int receiveResponse()throws IOException{

_buffer.clear();

_channel.read(_buffer);

return _intBuffer.get(0);

}

public static void main(String [] args){

SumClient sumClient=new SumClient();

System.out.println("加法结果为 :"+sumClient.getSum(100,324));

}

} // SumClient

3. 非阻塞的加法服务器

首先在openChannel方法中加入语句

_serverChannel.configureBlocking(false);//设置成为非阻塞模式

重写WaitForConnection方法的代码如下,使用非阻塞方式

private void waitForConnection()throws IOException{

Selector acceptSelector = SelectorProvider.provider().openSelector();

/*在服务器套接字上注册selector并设置为接受accept方法的通知。

这就告诉Selector,套接字想要在accept操作发生时被放在ready表

上,因此,允许多元非阻塞I/O发生。*/

SelectionKey acceptKey = ssc.register(acceptSelector,

SelectionKey.OP_ACCEPT);

int keysAdded = 0;

/*select方法在任何上面注册了的操作发生时返回*/

while ((keysAdded = acceptSelector.select()) 0) {

// 某客户已经准备好可以进行I/O操作了,获取其ready键集合

Set readyKeys = acceptSelector.selectedKeys();

Iterator i = readyKeys.iterator();

// 遍历ready键集合,并处理加法请求

while (i.hasNext()) {

SelectionKey sk = (SelectionKey)i.next();

i.remove();

ServerSocketChannel nextReady =

(ServerSocketChannel)sk.channel();

// 接受加法请求并处理它

_clientSocket = nextReady.accept().socket();

processRequest();

_clientSocket.close();

}

}

}

参考资料

1. Master Merlin's new I/O classes From ;

2. J2SE1.4.2 API Specification From ;

3. Working with SocketChannels From ;

4. NIO Examples From ;

Java中IO与NIO的区别和使用场景

在java2以前,传统的socket IO中,需要为每个连接创建一个线程,当并发的连接数量非常巨大时,线程所占用的栈内存和CPU线程切换的开销将非常巨大。java5以后使用NIO,不再需要为每个线程创建单独的线程,可以用一个含有限数量线程的线程池,甚至一个线程来为任意数量的连接服务。由于线程数量小于连接数量,所以每个线程进行IO操作时就不能阻塞,如果阻塞的话,有些连接就得不到处理,NIO提供了这种非阻塞的能力。

NIO 设计背后的基石:反应器模式,用于事件多路分离和分派的体系结构模式。

反应器(Reactor):用于事件多路分离和分派的体系结构模式

通常的,对一个文件描述符指定的文件或设备, 有两种工作方式: 阻塞 与非阻塞 。所谓阻塞方式的意思是指, 当试图对该文件描述符进行读写时, 如果当时没有东西可读,或者暂时不可写, 程序就进入等待 状态, 直到有东西可读或者可写为止。而对于非阻塞状态, 如果没有东西可读, 或者不可写, 读写函数马上返回, 而不会等待 。

一种常用做法是:每建立一个Socket连接时,同时创建一个新线程对该Socket进行单独通信(采用阻塞的方式通信)。这种方式具有很高的响应速度,并且控制起来也很简单,在连接数较少的时候非常有效,但是如果对每一个连接都产生一个线程的无疑是对系统资源的一种浪费,如果连接数较多将会出现资源不足的情况。

另一种较高效的做法是:服务器端保存一个Socket连接列表,然后对这个列表进行轮询,如果发现某个Socket端口上有数据可读时(读就绪),则调用该socket连接的相应读操作;如果发现某个 Socket端口上有数据可写时(写就绪),则调用该socket连接的相应写操作;如果某个端口的Socket连接已经中断,则调用相应的析构方法关闭该端口。这样能充分利用服务器资源,效率得到了很大提高。

传统的阻塞式IO,每个连接必须要开一个线程来处理,并且没处理完线程不能退出。

非阻塞式IO,由于基于反应器模式,用于事件多路分离和分派的体系结构模式,所以可以利用线程池来处理。事件来了就处理,处理完了就把线程归还。而传统阻塞方式不能使用线程池来处理,假设当前有10000个连接,非阻塞方式可能用1000个线程的线程池就搞定了,而传统阻塞方式就需要开10000个来处理。如果连接数较多将会出现资源不足的情况。非阻塞的核心优势就在这里。

为什么会这样,下面就对他们做进一步细致具体的分析:

首先,我们来分析传统阻塞式IO的瓶颈在哪里。在连接数不多的情况下,传统IO编写容易方便使用。但是随着连接数的增多,问题传统IO就不行了。因为前面说过,传统IO处理每个连接都要消耗一个线程,而程序的效率当线程数不多时是随着线程数的增加而增加,但是到一定的数量之后,是随着线程数的增加而减少。这里我们得出结论,传统阻塞式IO的瓶颈在于不能处理过多的连接。

然后,非阻塞式IO的出现的目的就是为了解决这个瓶颈。而非阻塞式IO是怎么实现的呢?非阻塞IO处理连接的线程数和连接数没有联系,也就是说处理 10000个连接非阻塞IO不需要10000个线程,你可以用1000个也可以用2000个线程来处理。因为非阻塞IO处理连接是异步的。当某个链接发送请求到服务器,服务器把这个连接请求当作一个请求"事件",并把这个"事件"分配给相应的函数处理。我们可以把这个处理函数放到线程中去执行,执行完就把线程归还。这样一个线程就可以异步的处理多个事件。而阻塞式IO的线程的大部分时间都浪费在等待请求上了。

所谓阻塞式IO流,就是指在从数据流当中读写数据的的时候,阻塞当前线程,直到IO流可以

重新使用为止,你也可以使用流的avaliableBytes()函数看看当前流当中有多少字节可以读取,这样

就不会再阻塞了。

介绍一下Java NIO,NIO读取文件都有哪些方法

NIO也就是New I/O,是一组扩展Java IO操作的API集, 于Java 1.4起被引入,Java 7中NIO又提供了一些新的文件系统API,叫NIO2.

NIO2提供两种主要的文件读取方法:

使用buffer和channel类

使用Path 和 File 类

NIO读取文件有以下三种方式:

1. 旧的NIO方式,使用BufferedReader

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

public class WithoutNIOExample

{

public static void main(String[] args)

{

BufferedReader br = null;

String sCurrentLine = null;

try

{

br = new BufferedReader(

new FileReader("test.txt"));

while ((sCurrentLine = br.readLine()) != null)

{

System.out.println(sCurrentLine);

}

}

catch (IOException e)

{

e.printStackTrace();

}

finally

{

try

{

if (br != null)

br.close();

} catch (IOException ex)

{

ex.printStackTrace();

}

}

}

}

2. 使用buffer读取小文件

import java.io.IOException;

import java.io.RandomAccessFile;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class ReadFileWithFileSizeBuffer

{

public static void main(String args[])

{

try

{

RandomAccessFile aFile = new RandomAccessFile(

"test.txt","r");

FileChannel inChannel = aFile.getChannel();

long fileSize = inChannel.size();

ByteBuffer buffer = ByteBuffer.allocate((int) fileSize);

inChannel.read(buffer);

buffer.rewind();

buffer.flip();

for (int i = 0; i fileSize; i++)

{

System.out.print((char) buffer.get());

}

inChannel.close();

aFile.close();

}

catch (IOException exc)

{

System.out.println(exc);

System.exit(1);

}

}

}

3. 分块读取大文件

import java.io.IOException;

import java.io.RandomAccessFile;

import java.nio.ByteBuffer;

import java.nio.channels.FileChannel;

public class ReadFileWithFixedSizeBuffer

{

public static void main(String[] args) throws IOException

{

RandomAccessFile aFile = new RandomAccessFile

("test.txt", "r");

FileChannel inChannel = aFile.getChannel();

ByteBuffer buffer = ByteBuffer.allocate(1024);

while(inChannel.read(buffer) 0)

{

buffer.flip();

for (int i = 0; i buffer.limit(); i++)

{

System.out.print((char) buffer.get());

}

buffer.clear(); // do something with the data and clear/compact it.

}

inChannel.close();

aFile.close();

}

}

4. 使用MappedByteBuffer读取文件

import java.io.RandomAccessFile;

import java.nio.MappedByteBuffer;

import java.nio.channels.FileChannel;

public class ReadFileWithMappedByteBuffer

{

public static void main(String[] args) throws IOException

{

RandomAccessFile aFile = new RandomAccessFile

("test.txt", "r");

FileChannel inChannel = aFile.getChannel();

MappedByteBuffer buffer = inChannel.map(FileChannel.MapMode.READ_ONLY, 0, inChannel.size());

buffer.load();?

for (int i = 0; i buffer.limit(); i++)

{

System.out.print((char) buffer.get());

}

buffer.clear(); // do something with the data and clear/compact it.

inChannel.close();

aFile.close();

}

}

关于javanio和java nio的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-12-15,除非注明,否则均为首码项目网原创文章,转载请注明出处。