「大顶堆java」大顶堆小顶堆的定义

博主:adminadmin 2022-12-14 06:03:07 742

今天给各位分享大顶堆java的知识,其中也会对大顶堆小顶堆的定义进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

第一排01第二排02 03,以此类推,怎么用代码实现数据排列效果

选择排序是常用内部排序的一种,常见的实现算法有直接选择排序算法和堆排序算法,选择排序的基本思想是每次从待排数据中选择第n小的数据放到排序列表的第n个位置,假如共有N个数据待排,那么经过N-1次排序后,待排数据就已经按照从小到大的顺序排列了。

直接选择排序算法的思想比较简单:(假设数据放在一个数组a中,且数组的长度是N)

1:从a[0]-a[N-1]中选出最小的数据,然后与a[0]交换位置

2:从a[1]-a[N-1]中选出最小的数据,然后与a[1]交换位置(第1步结束后a[0]就是N个数的最小值)

3:从a[2]-a[N-1]中选出最小的数据,然后与a[2]交换位置(第2步结束后a[1]就是N-1个数的最小值)

以此类推,N-1次排序后,待排数据就已经按照从小到大的顺序排列了。

直接选择排序的java实现如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public static void selectionSort(int[] elements){

for(int i = 0; i elements.length-1; ++i){

int k = i;

for(int j = i; j elements.length; ++j){

if(elements[k] elements[j]){

k = j;

}

}

if(k != i){//交换元素

int temp = elements[i];

elements[i] = elements[k];

elements[k] = temp;

}

}

}

直接选择排序算法的思路很清晰,实现起来也比较简单,但是效率不是很高(O(n*n))。

堆排序算法和直接选择排序算法最大的不同在于,堆排序算法充分利用大顶堆和完全二叉树的性质,保留每次排序后的结构,同时由于每次比较只是比较根节点和它的子节点,因此大大降低了比较的次数和交换的次数,从而提高效率,堆排序算法的时间复杂度是O(nlogn,以2为底)。

堆排序算法的思想是:(假设数据放在一个数组a中,且数组的长度是N)

1:以数组a为数据,建立一个大顶堆(这样对于二叉树的每个节点,根节点总是比子节点大,其实没必要要求二叉树的每个子树也是大顶堆)

2:交换大顶堆的根节点和数组a中的最后一个节点(最后一个节点不在参与后边的工作)

重复上边的工作,经过N-1次后,数组a已经排好序。

其他的我不太会

java中如何找出一个二维数组中最大值

int[][] a = {{12,32},{10,34},{18,36}} ;

int max =a[0][0] ; //设二维数组中的第一个为最大的值

for(int i = 0;ia.length;i++){

for(int j = 0;ja[i].length;j++){

if(a[i][j]max){ //如果该数组中还有比最大值都大的,那么它就是最大的

max = a[i][j];

}

}

}

System.out.println("这个二维数组中的最大值:"+max);

java中关于堆实现优先队列的问题,我编译可以通过,但是运行的时候会出现数组越界的错误,是怎么回事?

看下MaxHeapify这个方法,是不是逻辑有些问题:

if (l = heapsize A[l] A[i])

largest = l;

假如数组A长度为8的时候。当i为4的时候,l为8,你去判断A[8]A[4],A[8]这里数组越界了吧。

数据结构 java开发中常用的排序算法有哪些

排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:

(1)执行时间

(2)存储空间

(3)编程工作

对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:

一、冒泡(Bubble)排序——相邻交换

二、选择排序——每次最小/大排在相应的位置

三、插入排序——将下一个插入已排好的序列中

四、壳(Shell)排序——缩小增量

五、归并排序

六、快速排序

七、堆排序

八、拓扑排序

一、冒泡(Bubble)排序

----------------------------------Code 从小到大排序n个数------------------------------------

void BubbleSortArray()

{

for(int i=1;in;i++)

{

for(int j=0;in-i;j++)

{

if(a[j]a[j+1])//比较交换相邻元素

{

int temp;

temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;

}

}

}

}

-------------------------------------------------Code------------------------------------------------

效率 O(n²),适用于排序小列表。

二、选择排序

----------------------------------Code 从小到大排序n个数--------------------------------

void SelectSortArray()

{

int min_index;

for(int i=0;in-1;i++)

{

min_index=i;

for(int j=i+1;jn;j++)//每次扫描选择最小项

if(arr[j]arr[min_index]) min_index=j;

if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置

{

int temp;

temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;

}

}

}

-------------------------------------------------Code-----------------------------------------

效率O(n²),适用于排序小的列表。

三、插入排序

--------------------------------------------Code 从小到大排序n个数-------------------------------------

void InsertSortArray()

{

for(int i=1;in;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分

{

int temp=arr[i];//temp标记为未排序第一个元素

int j=i-1;

while (j=0 arr[j]temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/

{

arr[j+1]=arr[j];

j--;

}

arr[j+1]=temp;

}

}

------------------------------Code--------------------------------------------------------------

最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表

若列表基本有序,则插入排序比冒泡、选择更有效率。

四、壳(Shell)排序——缩小增量排序

-------------------------------------Code 从小到大排序n个数-------------------------------------

void ShellSortArray()

{

for(int incr=3;incr0;incr--)//增量递减,以增量3,2,1为例

{

for(int L=0;L(n-1)/incr;L++)//重复分成的每个子列表

{

for(int i=L+incr;in;i+=incr)//对每个子列表应用插入排序

{

int temp=arr[i];

int j=i-incr;

while(j=0arr[j]temp)

{

arr[j+incr]=arr[j];

j-=incr;

}

arr[j+incr]=temp;

}

}

}

}

--------------------------------------Code-------------------------------------------

适用于排序小列表。

效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。

壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。

五、归并排序

----------------------------------------------Code 从小到大排序---------------------------------------

void MergeSort(int low,int high)

{

if(low=high) return;//每个子列表中剩下一个元素时停止

else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/

MergeSort(low,mid);//子列表进一步划分

MergeSort(mid+1,high);

int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素

for(int i=low,j=mid+1,k=low;i=mid j=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/

{

if (arr[i]=arr[j];)

{

B[k]=arr[i];

I++;

}

else

{ B[k]=arr[j]; j++; }

}

for( ;j=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表

B[k]=arr[j];

for( ;i=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中

B[k]=arr[i];

for(int z=0;zhigh-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中

arr[z]=B[z];

}

-----------------------------------------------------Code---------------------------------------------------

效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。

适用于排序大列表,基于分治法。

六、快速排序

------------------------------------Code--------------------------------------------

/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}

int Partition(int [] arr,int low,int high)

{

int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素

while (low high)

{

//从后往前栽后半部分中寻找第一个小于枢纽元素的元素

while (low high arr[high] = pivot)

{

--high;

}

//将这个比枢纽元素小的元素交换到前半部分

swap(arr[low], arr[high]);

//从前往后在前半部分中寻找第一个大于枢纽元素的元素

while (low high arr [low ]=pivot )

{

++low ;

}

swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分

}

return low ;//返回枢纽元素所在的位置

}

void QuickSort(int [] a,int low,int high)

{

if (low high )

{

int n=Partition (a ,low ,high );

QuickSort (a ,low ,n );

QuickSort (a ,n +1,high );

}

}

----------------------------------------Code-------------------------------------

平均效率O(nlogn),适用于排序大列表。

此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。

基于分治法。

七、堆排序

最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。

思想:

(1)令i=l,并令temp= kl ;

(2)计算i的左孩子j=2i+1;

(3)若j=n-1,则转(4),否则转(6);

(4)比较kj和kj+1,若kj+1kj,则令j=j+1,否则j不变;

(5)比较temp和kj,若kjtemp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)

(6)令ki等于temp,结束。

-----------------------------------------Code---------------------------

void HeapSort(SeqIAst R)

{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。

堆排序与直接插入排序的区别:

直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。

堆排序可通过树形结构保存部分比较结果,可减少比较次数。

八、拓扑排序

例 :学生选修课排课先后顺序

拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。

方法:

在有向图中选一个没有前驱的顶点且输出

从图中删除该顶点和所有以它为尾的弧

重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。

---------------------------------------Code--------------------------------------

void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/

{

int indegree[M];

int i,k,j;

char n;

int count=0;

Stack thestack;

FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]

InitStack(thestack);//初始化栈

for(i=0;iG.num;i++)

Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);

for(i=0;iG.num;i++)

{

if(indegree[i]==0)

Push(thestack.vertices[i]);

}

Console.Write("拓扑排序输出顺序为:");

while(thestack.Peek()!=null)

{

Pop(thestack.Peek());

j=locatevex(G,n);

if (j==-2)

{

Console.WriteLine("发生错误,程序结束。");

exit();

}

Console.Write(G.vertices[j].data);

count++;

for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)

{

k=p.adjvex;

if (!(--indegree[k]))

Push(G.vertices[k]);

}

}

if (countG.num)

Cosole.WriteLine("该图有环,出现错误,无法排序。");

else

Console.WriteLine("排序成功。");

}

----------------------------------------Code--------------------------------------

算法的时间复杂度O(n+e)。

java中堆和栈的区别

Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等 指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时 动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。

栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类 型的变量(,int, short, long, byte, float, double, boolean, char)和对象句柄。

栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:

int a = 3;

int b = 3;

编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。

这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。

要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。

String是一个特殊的包装类数据。可以用:

String str = new String("abc");

String str = "abc";

两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。

而第二种是先在栈中创建一个对String类的对象引用变量str,然后查找栈中有没有存放"abc",如果没有,则将"abc"存放进栈,并令str指向”abc”,如果已经有”abc” 则直接令str指向“abc”。

比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。

String str1 = "abc";

String str2 = "abc";

System.out.println(str1==str2); //true

可以看出str1和str2是指向同一个对象的。

String str1 =new String ("abc");

String str2 =new String ("abc");

System.out.println(str1==str2); // false

用new的方式是生成不同的对象。每一次生成一个。

因此用第一种方式创建多个”abc”字符串,在内存中其实只存在一个对象而已. 这种写法有利与节省内存空间. 同时它可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于String str = new String("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。

另一方面, 要注意: 我们在使用诸如String str = "abc";的格式定义类时,总是想当然地认为,创建了String类的对象str。担心陷阱!对象可能并没有被创建!而可能只是指向一个先前已经创建的 对象。只有通过new()方法才能保证每次都创建一个新的对象。

由于String类的immutable性质,当String变量需要经常变换其值时,应该考虑使用StringBuffer类,以提高程序效率。

java编程的冒泡等排序示例

Java排序算法

1)分类:

1)插入排序(直接插入排序、希尔排序)

2)交换排序(冒泡排序、快速排序)

3)选择排序(直接选择排序、堆排序)

4)归并排序

5)分配排序(箱排序、基数排序)

所需辅助空间最多:归并排序

所需辅助空间最少:堆排序

平均速度最快:快速排序

不稳定:快速排序,希尔排序,堆排序。

1)选择排序算法的时候

1.数据的规模 ; 2.数据的类型 ; 3.数据已有的顺序

一般来说,当数据规模较小时,应选择直接插入排序或冒泡排序。任何排序算法在数据量小时基本体现不出来差距。 考虑数据的类型,比如如果全部是正整数,那么考虑使用桶排序为最优。 考虑数据已有顺序,快排是一种不稳定的排序(当然可以改进),对于大部分排好的数据,快排会浪费大量不必要的步骤。数据量极小,而起已经基本排好序,冒泡是最佳选择。我们说快排好,是指大量随机数据下,快排效果最理想。而不是所有情况。

3)总结:

——按平均的时间性能来分:

1)时间复杂度为O(nlogn)的方法有:快速排序、堆排序和归并排序,其中以快速排序为最好;

2)时间复杂度为O(n2)的有:直接插入排序、起泡排序和简单选择排序,其中以直接插入为最好,特 别是对那些对关键字近似有序的记录序列尤为如此;

3)时间复杂度为O(n)的排序方法只有,基数排序。

当待排记录序列按关键字顺序有序时,直接插入排序和起泡排序能达到O(n)的时间复杂度;而对于快速排序而言,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布而改变。

——按平均的空间性能来分(指的是排序过程中所需的辅助空间大小):

1) 所有的简单排序方法(包括:直接插入、起泡和简单选择)和堆排序的空间复杂度为O(1);

2) 快速排序为O(logn ),为栈所需的辅助空间;

3) 归并排序所需辅助空间最多,其空间复杂度为O(n );

4)链式基数排序需附设队列首尾指针,则空间复杂度为O(rd )。

——排序方法的稳定性能:

1) 稳定的排序方法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和 经过排序之后,没有改变。

2) 当对多关键字的记录序列进行LSD方法排序时,必须采用稳定的排序方法。

3) 对于不稳定的排序方法,只要能举出一个实例说明即可。

4) 快速排序,希尔排序和堆排序是不稳定的排序方法。

4)插入排序:

包括直接插入排序,希尔插入排序。

直接插入排序: 将一个记录插入到已经排序好的有序表中。

1, sorted数组的第0个位置没有放数据。

2,从sorted第二个数据开始处理:

如果该数据比它前面的数据要小,说明该数据要往前面移动。

首先将该数据备份放到 sorted的第0位置当哨兵。

然后将该数据前面那个数据后移。

然后往前搜索,找插入位置。

找到插入位置之后讲 第0位置的那个数据插入对应位置。

O(n*n), 当待排记录序列为正序时,时间复杂度提高至O(n)。

希尔排序(缩小增量排序 diminishing increment sort):先将整个待排记录序列分割成若干个子序列分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。

面试穿什么,这里找答案!

插入排序Java代码:

public class InsertionSort {

// 插入排序:直接插入排序 ,希尔排序

public void straightInsertionSort(double [] sorted){

int sortedLen= sorted.length;

for(int j=2;jsortedLen;j++){

if(sorted[j]sorted[j-1]){

sorted[0]= sorted[j];//先保存一下后面的那个

sorted[j]=sorted[j-1];// 前面的那个后移。

int insertPos=0;

for(int k=j-2;k=0;k--){

if(sorted[k]sorted[0]){

sorted[k+1]=sorted[k];

}else{

insertPos=k+1;

break;

}

}

sorted[insertPos]=sorted[0];

}

}

}

public void shellInertionSort(double [] sorted, int inc){

int sortedLen= sorted.length;

for(int j=inc+1;jsortedLen;j++ ){

if(sorted[j]sorted[j-inc]){

sorted[0]= sorted[j];//先保存一下后面的那个

int insertPos=j;

for(int k=j-inc;k=0;k-=inc){

if(sorted[k]sorted[0]){

sorted[k+inc]=sorted[k];

//数据结构课本上这个地方没有给出判读,出错:

if(k-inc=0){

insertPos = k;

}

}else{

insertPos=k+inc;

break;

}

}

sorted[insertPos]=sorted[0];

}

}

}

public void shellInsertionSort(double [] sorted){

int[] incs={7,5,3,1};

int num= incs.length;

int inc=0;

for(int j=0;jnum;j++){

inc= incs[j];

shellInertionSort(sorted,inc);

}

}

public static void main(String[] args) {

Random random= new Random(6);

int arraysize= 21;

double [] sorted=new double[arraysize];

System.out.print("Before Sort:");

for(int j=1;jarraysize;j++){

sorted[j]= (int)(random.nextDouble()* 100);

System.out.print((int)sorted[j]+" ");

}

System.out.println();

InsertionSort sorter=new InsertionSort();

// sorter.straightInsertionSort(sorted);

sorter.shellInsertionSort(sorted);

System.out.print("After Sort:");

for(int j=1;jsorted.length;j++){

System.out.print((int)sorted[j]+" ");

}

System.out.println();

}

}

面试穿什么,这里找答案!

5)交换排序:

包括冒泡排序,快速排序。

冒泡排序法:该算法是专门针对已部分排序的数据进行排序的一种排序算法。如果在你的数据清单中只有一两个数据是乱序的话,用这种算法就是最快的排序算法。如果你的数据清单中的数据是随机排列的,那么这种方法就成了最慢的算法了。因此在使用这种算法之前一定要慎重。这种算法的核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。

快速排序:通过一趟排序,将待排序记录分割成独立的两个部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。具体做法是:使用两个指针low,high, 初值分别设置为序列的头,和序列的尾,设置pivotkey为第一个记录,首先从high开始向前搜索第一个小于pivotkey的记录和pivotkey所在位置进行交换,然后从low开始向后搜索第一个大于pivotkey的记录和此时pivotkey所在位置进行交换,重复知道low=high了为止。

交换排序Java代码:

public class ExchangeSort {

public void BubbleExchangeSort(double [] sorted){

int sortedLen= sorted.length;

for(int j=sortedLen;j0;j--){

int end= j;

for(int k=1;kend-1;k++){

double tempB= sorted[k];

sorted[k]= sorted[k]sorted[k+1]?

sorted[k]:sorted[k+1];

if(Math.abs(sorted[k]-tempB)10e-6){

sorted[k+1]=tempB;

}

}

}

}

public void QuickExchangeSortBackTrack(double [] sorted,

int low,int high){

if(lowhigh){

int pivot= findPivot(sorted,low,high);

QuickExchangeSortBackTrack(sorted,low,pivot-1);

QuickExchangeSortBackTrack(sorted,pivot+1,high);

}

}

public int findPivot(double [] sorted, int low, int high){

sorted[0]= sorted[low];

while(lowhigh){

while(lowhigh sorted[high]= sorted[0])--high;

sorted[low]= sorted[high];

while(lowhigh sorted[low]=sorted[0])++low;

sorted[high]= sorted[low];

}

sorted[low]=sorted[0];

return low;

}

public static void main(String[] args) {

Random random= new Random(6);

int arraysize= 21;

double [] sorted=new double[arraysize];

System.out.print("Before Sort:");

for(int j=1;jarraysize;j++){

sorted[j]= (int)(random.nextDouble()* 100);

System.out.print((int)sorted[j]+" ");

}

System.out.println();

ExchangeSort sorter=new ExchangeSort();

// sorter.BubbleExchangeSort(sorted);

sorter.QuickExchangeSortBackTrack(sorted, 1, arraysize-1);

System.out.print("After Sort:");

for(int j=1;jsorted.length;j++){

System.out.print((int)sorted[j]+" ");

}

System.out.println();

}

}

6)选择排序:

分为直接选择排序, 堆排序

直接选择排序:第i次选取 i到array.Length-1中间最小的值放在i位置。

堆排序:首先,数组里面用层次遍历的顺序放一棵完全二叉树。从最后一个非终端结点往前面调整,直到到达根结点,这个时候除根节点以外的所有非终端节点都已经满足堆得条件了,于是需要调整根节点使得整个树满足堆得条件,于是从根节点开始,沿着它的儿子们往下面走(最大堆沿着最大的儿子走,最小堆沿着最小的儿子走)。 主程序里面,首先从最后一个非终端节点开始调整到根也调整完,形成一个heap, 然后将heap的根放到后面去(即:每次的树大小会变化,但是 root都是在1的位置,以方便计算儿子们的index,所以如果需要升序排列,则要逐步大顶堆。因为根节点被一个个放在后面去了。 降序排列则要建立小顶堆)

代码中的问题: 有时候第2个和第3个顺序不对(原因还没搞明白到底代码哪里有错)

选择排序Java代码:

public class SelectionSort {

public void straitSelectionSort(double [] sorted){

int sortedLen= sorted.length;

for(int j=1;jsortedLen;j++){

int jMin= getMinIndex(sorted,j);

exchange(sorted,j,jMin);

}

}

public void exchange(double [] sorted,int i,int j){

int sortedLen= sorted.length;

if(isortedLen jsortedLen ij i=0 j=0){

double temp= sorted[i];

sorted[i]=sorted[j];

sorted[j]=temp;

}

}

public int getMinIndex(double [] sorted, int i){

int sortedLen= sorted.length;

int minJ=1;

double min= Double.MAX_VALUE;

for(int j=i;jsortedLen;j++){

if(sorted[j]min){

min= sorted[j];

minJ= j;

}

}

return minJ;

}

public void heapAdjust(double [] sorted,int start,int end){

if(startend){

double temp= sorted

今天给各位分享大顶堆java的知识,其中也会对大顶堆小顶堆的定义进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

;

// 这个地方jend与课本不同,j=end会报错:

for(int j=2*start;jend;j *=2){

if(j+1end sorted[j]-sorted[j+1]10e-6){

++j;

}

if(temp=sorted[j]){

break;

}

sorted

今天给各位分享大顶堆java的知识,其中也会对大顶堆小顶堆的定义进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

=sorted[j];

start=j;

}

sorted

今天给各位分享大顶堆java的知识,其中也会对大顶堆小顶堆的定义进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

=temp;

}

}

public void heapSelectionSort(double [] sorted){

int sortedLen = sorted.length;

for(int i=sortedLen/2;i0;i--){

heapAdjust(sorted,i,sortedLen);

}

for(int i=sortedLen;i1;--i){

exchange(sorted,1,i);

heapAdjust(sorted,1,i-1);

}

}

public static void main(String [] args){

Random random= new Random(6);

int arraysize=9;

double [] sorted=new double[arraysize];

System.out.print("Before Sort:");

for(int j=1;jarraysize;j++){

sorted[j]= (int)(random.nextDouble()* 100);

System.out.print((int)sorted[j]+" ");

}

System.out.println();

SelectionSort sorter=new SelectionSort();

// sorter.straitSelectionSort(sorted);

sorter.heapSelectionSort(sorted);

System.out.print("After Sort:");

for(int j=1;jsorted.length;j++){

System.out.print((int)sorted[j]+" ");

}

System.out.println();

}

}

面试穿什么,这里找答案!

7)归并排序:

将两个或两个以上的有序表组合成一个新的有序表。归并排序要使用一个辅助数组,大小跟原数组相同,递归做法。每次将目标序列分解成两个序列,分别排序两个子序列之后,再将两个排序好的子序列merge到一起。

归并排序Java代码:

public class MergeSort {

private double[] bridge;//辅助数组

public void sort(double[] obj){

if (obj == null){

throw new NullPointerException("

The param can not be null!");

}

bridge = new double[obj.length]; // 初始化中间数组

mergeSort(obj, 0, obj.length - 1); // 归并排序

bridge = null;

}

private void mergeSort(double[] obj, int left, int right){

if (left right){

int center = (left + right) / 2;

mergeSort(obj, left, center);

mergeSort(obj, center + 1, right);

merge(obj, left, center, right);

}

}

private void merge(double[] obj, int left,

int center, int right){

int mid = center + 1;

int third = left;

int tmp = left;

while (left = center mid = right){

// 从两个数组中取出小的放入中间数组

if (obj[left]-obj[mid]=10e-6){

bridge[third++] = obj[left++];

} else{

bridge[third++] = obj[mid++];

}

}

// 剩余部分依次置入中间数组

while (mid = right){

bridge[third++] = obj[mid++];

}

while (left = center){

bridge[third++] = obj[left++];

}

// 将中间数组的内容拷贝回原数组

copy(obj, tmp, right);

}

private void copy(double[] obj, int left, int right)

{

while (left = right){

obj[left] = bridge[left];

left++;

}

}

public static void main(String[] args) {

Random random = new Random(6);

int arraysize = 10;

double[] sorted = new double[arraysize];

System.out.print("Before Sort:");

for (int j = 0; j arraysize; j++) {

sorted[j] = (int) (random.nextDouble() * 100);

System.out.print((int) sorted[j] + " ");

}

System.out.println();

MergeSort sorter = new MergeSort();

sorter.sort(sorted);

System.out.print("After Sort:");

for (int j = 0; j sorted.length; j++) {

System.out.print((int) sorted[j] + " ");

}

System.out.println();

}

}

面试穿什么,这里找答案!

8)基数排序:

使用10个辅助队列,假设最大数的数字位数为 x, 则一共做 x次,从个位数开始往前,以第i位数字的大小为依据,将数据放进辅助队列,搞定之后回收。下次再以高一位开始的数字位为依据。

以Vector作辅助队列,基数排序的Java代码:

public class RadixSort {

private int keyNum=-1;

private VectorVectorDouble util;

public void distribute(double [] sorted, int nth){

if(nth=keyNum nth0){

util=new VectorVectorDouble();

for(int j=0;j10;j++){

Vector Double temp= new Vector Double();

util.add(temp);

}

for(int j=0;jsorted.length;j++){

int index= getNthDigit(sorted[j],nth);

util.get(index).add(sorted[j]);

}

}

}

public int getNthDigit(double num,int nth){

String nn= Integer.toString((int)num);

int len= nn.length();

if(len=nth){

return Character.getNumericValue(nn.charAt(len-nth));

}else{

return 0;

}

}

public void collect(double [] sorted){

int k=0;

for(int j=0;j10;j++){

int len= util.get(j).size();

if(len0){

for(int i=0;ilen;i++){

sorted[k++]= util.get(j).get(i);

}

}

}

util=null;

}

public int getKeyNum(double [] sorted){

double max= Double.MIN_VALUE;

for(int j=0;jsorted.length;j++){

if(sorted[j]max){

max= sorted[j];

}

}

return Integer.toString((int)max).length();

}

public void radixSort(double [] sorted){

if(keyNum==-1){

keyNum= getKeyNum(sorted);

}

for(int i=1;i=keyNum;i++){

distribute(sorted,i);

collect(sorted);

}

}

public static void main(String[] args) {

Random random = new Random(6);

int arraysize = 21;

double[] sorted = new double[arraysize];

System.out.print("Before Sort:");

for (int j = 0; j arraysize; j++) {

sorted[j] = (int) (random.nextDouble() * 100);

System.out.print((int) sorted[j] + " ");

}

System.out.println();

RadixSort sorter = new RadixSort();

sorter.radixSort(sorted);

System.out.print("After Sort:");

for (int j = 0; j sorted.length; j++) {

System.out.print((int) sorted[j] + " ");

}

System.out.println();

}

}

//copy而来

关于大顶堆java和大顶堆小顶堆的定义的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-12-14,除非注明,否则均为首码项目网原创文章,转载请注明出处。