关于Javatushare的信息

博主:adminadmin 2022-12-13 09:42:08 74

今天给各位分享Javatushare的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

想用python建模,哪些包比较好用

1、 软件推荐:python

常用的量化软件有python、matlab、java、C++。从开发难度而言python和matlab都比较容易,java和C++麻烦一些。从运行速度而言,C++、java要快于matlab和python。不过对于大部分人而言,尤其是初学者,开发占用的时间远大于运行时间。如果追求运行速度的话,先将策略开发出来,再用C重写也不迟。另外,从量化资源而言,python资源多于matlab,而且matlab是商业软件,python是免费的。因此我推荐大家用python。

使用python的话,最好下载一个anaconda。这个软件将常用的库都集成好了,免去自己安装的烦恼。下载地址:Download Anaconda Now!

python教程推荐这个网站:Table of Contents,只需要看第一部分就可以了。该教程不仅介绍了python,而且介绍了numpy,scipy,pandas,matplotlib等科学计算库。

2、 数据源推荐:tushare

Tushare支持的数据很全面,相比wind个人版量化接口,tushare更友好。因此推荐tushare。下载地址:TuShare -财经数据接口包

3、 量化框架:推荐使用量化平台

量化平台可以看成是一个已经搭建好的框架。用户只需添加一些自己的买卖条件,即可回测策略,免去了自己从无到有搭建基础框架的过程。

这里推荐一下咱们的京东平台。首先京东的数据和撮合机制还是很专业的,比如交易考虑到了涨停不能买、跌停不能卖的问题,另外京东在回测速度方面目前也具有优势。

以上是做量化的一些基础工具。另外根据策略类型的不同,也会用到一些其他工具。

个人做量化交易需要注意些什么?

一说到量化投资,一下子蹦出来一堆厉害的语汇,例如:FPGA,微波加热,高频率,纳秒等级延迟时间这些。这种全是高频交易中的语汇,高频交易的确是基金管理公司做起来较为适合,平常人搞起来门槛较为高。

可是,必须确立一点量化投资不相当于高频交易。买卖假如依据频率来区划的话,可分成:高频率:ticke纳秒等级的1s等级中低频:1s~2h等级超低频:1d~2w等长线投资高频交易对延迟时间,特性和可靠性规定十分高,必须很多的硬件配置的成本费和人力成本。

可是中低频买卖对硬件配置规定便会低许多。本人与基金管理公司差别关键反映在优化算法上,普通程序也是有工作能力捕捉到这一频率的买卖数据信号。老头子废话不多说,就一个字,立即干!假如要想剖析A股,或是BTC,就必须自身构建一套自然环境。

一般构建一个量化平台必须这种流程:设立账户〉开发工具构建〉数据信息提前准备〉量化交易策略开发设计〉回归测试〉模拟交易〉实盘买卖一、设立账户(这里忽略)

一、开发工具构建现阶段流行的两种服务平台是,python和R语言。这两个语言表达有给予回测架构,时间序列分析剖析,数据分析的库,(C+和java还可以,但是门槛相对性较为高)。

Python:现阶段应该是最广泛的本人量化分析技术性优选 语言表达,由于有关的开源框架非常丰富多彩。R:高级优化算法较为便捷,小区较为活跃性。我选择的是Python,常见的回测架构用的是ZipLine和BackTrader。

二、数据信息提前准备中国的股票数据,有一些服务提供商给予,例如通联数据、tushare;海外证券数据信息能够从得这种数据信息后就可以导到数据库查询去。有关数据库查询的挑选,一般应用Mysql,假如信息量较为大(100G)能够应用mogodb,一般本人不容易这么大信息量。

三、量化交易策略开发设计说到买卖优化算法,通常会想到深度学习、马尔可夫实体模型、数据分析、深度神经网络、神经元网络等这种厉害的AI语汇,可是,一般游戏玩家基本上用不上。

针对一般投资者能够采用简易高效率的优化算法:

1、将自身实际操作和念头程序化交易,例如:三连阳,买低价股票或是你听闻过什么神奇的实际操作技巧全是用编码完成,随后应用历史记录开展回测。

2.传统式的指标值买卖:移动平均线,MACD,布林线指标等,蜡烛图基础理论,RSI,江恩理论。这种纯技术指标分析指标值必须在特殊的情景才可以有功效,大家都听闻过海龟交易法,很有可能都觉得挺有些道理的。但具体情况怎样,用A股或是外汇数据测试一下,便会发觉长期性回报率并不是特别好。

3.多因子选股票:每一个投资者都是有自身的选股票基础理论,例如有些人会看市净率,股票换手率,市净率,领域状况,交易量。这种挑选要素非常简单,但要是以好几千个股里去挑选,通常必须很多活力。程序流程就能特别好处理这种难题。如果你是高级玩家还可以试着一下高级优化算法。

例如深度学习,数据分析等。互联网大数据在金融投资行业运用或是处在逐渐环节。从现阶段信息内容看来,互联网大数据基金收益率的算是非常好,例如百度搜索和广发证券协作的百发指数型基金,腾讯官方和嘉实协作的互联网大数据股票基金。

四、回归测试假如回测实际效果非常好,回报率,最大回撤率,Sharp值,等指标值,都是在可接纳的范畴内容,你毫无疑问便会激动,急着要上真正买卖,乃至逐渐方案创立私募投资基金,可是,别着急,最好是模拟交易一下。

五、模拟交易但在实盘买卖前,还必须做一两个月模拟交易。许多回测实际效果非常好的对策不一定在模拟交易情况下就主要表现得好。历史记录是固定不动,回测的情况下能够根据持续调节主要参数,让各类指标值趋向极致,有时会造成优化算法过度拟合,由于销售市场一直千姿百态,太过于呆板的优化算法是没法融入销售市场转变。

模拟交易最后实际效果一般在于你的程序流程是不是灵便,是不是优良的风险性和资金分配优化算法。

总结:对于说本人做量化投资是不是可靠,上边的步骤早已表明了实际可策划方案,可靠性显而易见。对于能否赚到钱,就看本人的修为了更好地。

请问怎样用Java获取股票行情历史数据?新浪、搜狐、百度财经都可以......

public class StockConnection {

public static void main(String[] args) {

URL ur = null;

try {

//搜狐股票行情历史接口

// ur = new URL(";start=20130930end=20131231stat=1order=Dperiod=dcallback=historySearchHandlerrt=jsonp");

//新浪股票行情历史接口

ur = new URL(";rand=random(10000)symbol=sh600000end_date=20150809begin_date=20000101type=plain");

HttpURLConnection uc = (HttpURLConnection) ur.openConnection();

BufferedReader reader = new BufferedReader(new InputStreamReader(ur.openStream(),"GBK"));

String line;

while((line = reader.readLine()) != null){

System.out.println(line);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

}

求助大神 有没有股票实时行情的API接口

百度搜索【麦蕊智数】,A股实时股票信息各类数据数据都有,很稳定,可以看看API文档了解一下数据格式。

国内主流的量化平台都有哪些?

掘金量化交易平台V3.0

地址:

语言:C++、C#、Python、MATLAB

方式:本机

品种:股票,期货

优矿

地址:

语言:python

方式:云端

品种:股票,基金,期货

特点:支持外部数据的购买,数据较多,有聚源等提供的,较靠谱

RiceQuant米筐量化交易平台

地址:

语言:python,java

方式:云端

品种:股票,基金

特点:口碑较好,据说较人性化

Joinquant聚宽

地址:

语言:python

方式:云端

品种:股票,基金

特点:可订阅别人策略和看到别人策略回测图

BotVS量化平台

地址:

语言:JS

方式:云端

品种:期货,股票,数字货币

特点:支持数字货币,比如比特币

Bigquant人工智能量化

地址:

语言:python

方式:云端

品种:股票

其他:目前网站只有架子,很多栏目是空的,突出了人工智能,但没看到具体策略。

果仁

地址:

语言:python

方式:云端

品种:股票,基金,组合。

特点:口碑较好,支持策略跟随

其他的较小众的平台

镭矿

地址:

京东量化

地址:

同花顺量化

地址:

点宽网

地址:

诸葛量化

地址:

数库(人工智能驱动金融创新)

免费开源python财经数据接口包

地址:

特点:只有数据,非量化策略平台

Javatushare的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、Javatushare的信息别忘了在本站进行查找喔。

The End

发布于:2022-12-13,除非注明,否则均为首码项目网原创文章,转载请注明出处。