「数字签名算法java」数字签名算法可实现

博主:adminadmin 2022-12-10 07:24:06 95

今天给各位分享数字签名算法java的知识,其中也会对数字签名算法可实现进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

java最常用的几种加密算法

简单的Java加密算法有:

第一种. BASE

Base是网络上最常见的用于传输Bit字节代码的编码方式之一,大家可以查看RFC~RFC,上面有MIME的详细规范。Base编码可用于在HTTP环境下传递较长的标识信息。例如,在Java Persistence系统Hibernate中,就采用了Base来将一个较长的唯一标识符(一般为-bit的UUID)编码为一个字符串,用作HTTP表单和HTTP GET URL中的参数。在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式。此时,采用Base编码具有不可读性,即所编码的数据不会被人用肉眼所直接看到。

第二种. MD

MD即Message-Digest Algorithm (信息-摘要算法),用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD的前身有MD、MD和MD。

MD算法具有以下特点:

压缩性:任意长度的数据,算出的MD值长度都是固定的。

容易计算:从原数据计算出MD值很容易。

抗修改性:对原数据进行任何改动,哪怕只修改个字节,所得到的MD值都有很大区别。

弱抗碰撞:已知原数据和其MD值,想找到一个具有相同MD值的数据(即伪造数据)是非常困难的。

强抗碰撞:想找到两个不同的数据,使它们具有相同的MD值,是非常困难的。

MD的作用是让大容量信息在用数字签名软件签署私人密钥前被”压缩”成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。除了MD以外,其中比较有名的还有sha-、RIPEMD以及Haval等。

第三种.SHA

安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于^位的消息,SHA会产生一个位的消息摘要。该算法经过加密专家多年来的发展和改进已日益完善,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。

SHA-与MD的比较

因为二者均由MD导出,SHA-和MD彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:

对强行攻击的安全性:最显著和最重要的区别是SHA-摘要比MD摘要长 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD是^数量级的操作,而对SHA-则是^数量级的操作。这样,SHA-对强行攻击有更大的强度。

对密码分析的安全性:由于MD的设计,易受密码分析的攻击,SHA-显得不易受这样的攻击。

速度:在相同的硬件上,SHA-的运行速度比MD慢。

第四种.HMAC

HMAC(Hash Message Authentication Code,散列消息鉴别码,基于密钥的Hash算法的认证协议。消息鉴别码实现鉴别的原理是,用公开函数和密钥产生一个固定长度的值作为认证标识,用这个标识鉴别消息的完整性。使用一个密钥生成一个固定大小的小数据块,即MAC,并将其加入到消息中,然后传输。接收方利用与发送方共享的密钥进行鉴别认证等。

求ECDSA的Java代码

【方案1】

package ECDSA;

import com.sun.org.apache.xerces.internal.impl.dv.util.HexBin;

import java.security.*;

import java.security.interfaces.ECPrivateKey;

import java.security.interfaces.ECPublicKey;

import java.security.spec.PKCS8EncodedKeySpec;

import java.security.spec.X509EncodedKeySpec;

public class Ecdsa {

  private static String src = "hello berber" ;

  public static void main(String []args){

      jdkECDSA();

  }

  public static void jdkECDSA(){

      // 1.初始化密钥

      try{

          KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("EC");

          keyPairGenerator.initialize(256);

          KeyPair keyPair = keyPairGenerator.generateKeyPair() ;

          ECPublicKey ecPublicKey = (ECPublicKey)keyPair.getPublic() ;

          ECPrivateKey ecPrivateKey = (ECPrivateKey)keyPair.getPrivate() ;

          // 执行签名

          PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new PKCS8EncodedKeySpec(ecPrivateKey.getEncoded());

          KeyFactory keyFactory = KeyFactory.getInstance("EC") ;

          PrivateKey privateKey = keyFactory.generatePrivate(pkcs8EncodedKeySpec) ;

          Signature signature = Signature.getInstance("SHA1withECDSA");

          signature.initSign(privateKey);

          signature.update(src.getBytes());

          byte []arr = signature.sign();

          System.out.println("jdk ecdsa sign :"+ HexBin.encode(arr));

          // 验证签名

          X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(ecPublicKey.getEncoded());

          keyFactory = KeyFactory.getInstance("EC");

          PublicKey publicKey = keyFactory.generatePublic(x509EncodedKeySpec);

          signature = Signature.getInstance("SHA1withECDSA");

          signature.initVerify(publicKey);

          signature.update(src.getBytes());

          boolean bool = signature.verify(arr);

          System.out.println("jdk ecdsa verify:"+bool);

      }catch(Exception e){

      }

  }

}

Java数字签名——ECDSA算法

【方案2】

public class MyTest {

/**

* @param args

*/

public static void main(String[] args) {

new MyTest().getSign();

}

void getSign() {

// Get the instance of the Key Generator with "EC" algorithm

try {

KeyPairGenerator g = KeyPairGenerator.getInstance("EC");

ECGenParameterSpec kpgparams = new ECGenParameterSpec("secp256r1");

g.initialize(kpgparams);

KeyPair pair = g.generateKeyPair();

// Instance of signature class with SHA256withECDSA algorithm

Signature ecdsaSign = Signature.getInstance("SHA256withECDSA");

ecdsaSign.initSign(pair.getPrivate());

System.out.println("Private Keys is::" + pair.getPrivate());

System.out.println("Public Keys is::" + pair.getPublic());

String msg = "text ecdsa with sha256";//getSHA256(msg)

ecdsaSign.update((msg + pair.getPrivate().toString())

.getBytes("UTF-8"));

byte[] signature = ecdsaSign.sign();

System.out.println("Signature is::"

+ new BigInteger(1, signature).toString(16));

// Validation

ecdsaSign.initVerify(pair.getPublic());

ecdsaSign.update(signature);

if (ecdsaSign.verify(signature))

System.out.println("valid");

else

System.out.println("invalid!!!!");

} catch (Exception e) {

// TODO: handle exception

e.printStackTrace();

}

}}

java – 使用secp256r1曲线和SHA256算法生

怎么验证生成的Ecdsa签名是正确的呢,可以看下这篇文章:RSA,ECC,Ecdsa,国密SM2的签名,验签,加密

java的signature类提供了哪些算法

Signature 类用来为应用程序提供数字签名算法功能。数字签名用于确保数字数据的验证和完整性。

在所有算法当中,数字签名可以是 NIST 标准的 DSA,它使用 DSA 和 SHA-1。可以将使用 SHA-1 消息摘要算法的 DSA 算法指定为 SHA1withDSA。如果使用 RSA,对消息摘要算法则会有多种选择,因此,可以将签名算法指定为 MD2withRSA、MD5withRSA 或 SHA1withRSA。因为没有默认的算法名称,所以必须为其指定名称。

Signature 对象可用来生成和验证数字签名。

数字签名和数字证书

数字签名是一种用于信息 真实性 和 完整性 校验的手段,一套数字签名包含签名和验证两种运算。下面是一套简单的数字签名示意图。

数字签名使用 非对称加密 技术。每个人都有一对钥匙,私钥只有本人知道,公钥公开,私钥签名,公钥验签。

在进行信息传递时,信息发送者用私钥生成签名并将公钥一起发送给信息接收者,接收者使用公钥验签。上述过程中信息完整性得到校验,但发送者的身份是否合法无法得知(因为任何人都可以声称自己是合法的),因此引入了 身份认证机构 。

身份认证机构是 信息接收者 能信任的机构,所有的公钥必须向该机构进行注册。注册后身份认证机构给发送者颁发一 数字证书 。对文件签名后,发送者把此数字证书连同文件及签名一起发给信息接收者,接收者向身份认证机构求证是否真地是用发送者密钥签发的文件。

数字证书是一种电子档案,用来证明公钥拥有者的身份。此档案包含了公钥信息、拥有者身份信息(主体)、以及数字证书认证机构(发行者)对该文件的数字签名。

证书的本质就是对公钥加数字签名,认证机构用自己的私钥对需要认证的人(或组织机构)的公钥进行数字签名并生成证书。

我们需要了解以下几种类型的证书

自签证书

用户可以自己生成数字证书,不过没有任何可信赖的人签名,它主要用于小范围测试,这种自签名证书通常不会被广泛信任,使用时可能会遇到电脑软件的安全警告。

根证书

根证书获得广泛认可,通常已预先安装在各种软体(包括操作系统、浏览器、电邮软件等),作为信任链的起点,来自于公认可靠的政府机关、证书颁发机构公司、非营利组织等,与各大软件商透过严谨的核认程序才在不同的软件广泛部署。由于部署程序复杂费时,需要行政人员的授权及机构法人身份的核认,一张根证书有效期可能长达二十年以上。在某些企业,也可能会在内部电脑自行安装企业自签的根证书,以支援内部网的企业级软件;但是这些证书可能未被广泛认可,只在企业内部适用。

中介证书

认证机构的一个重要任务就是为客户签发证书,虽然广泛认可的认证机构都已拥有根证书,相对应的私钥可用以签署其他证书,但因为密钥管理和行政考虑,一般会先行签发中介证书,才为客户作数位签署。中介证书的有效期会较根证书为短,并可能对不同类别的客户有不同的中介证书作分工。

TLS服务器证书

网站在互联网上提供服务时,域名就是服务器证书上主体,相关机构名称则写在组织或单位一栏上。证书和私钥会安装在服务器。客户端的软件(如浏览器)会执行认证路径验证算(Certification path validation algorithm)以确保安全,如果未能肯定加密通道是否安全(例如证书上的主体名称不对应网站域名、伺服器使用了自签证书、或加密算法不够强),可能会警告用户。

TLS客户端证书

客户端证书包含电子邮件地址或个人姓名,而不是主机名。客户端证书比较不常见,因为考虑到技术门槛及成本因素,通常都是由服务提供者验证客户身份,而不是依赖第三方认证机构。通常,需要使用到客户端证书的服务都是内部网的企业级软件,他们会设立自己的内部根证书,由企业的技术人员在企业内部的电脑安装相关客户端证书以便使用。在公开的互联网,大多数网站都是使用登入密码和Cookie来验证用户,而不是客户端证书。

根证书(自签证书)、中介证书和终端实体(TLS服务器/客户端)证书的形成如下信任链

证书一般遵从X.509格式规范

证书可以二进制或 Base64 形式储存,常见的文件扩展名有.cer、.crt、.der和.pem。如果把证书和私钥一起储存,则可以使用PKCS#12(.p12)格式。

我们在写对外 API 时,针对信息传递的安全考虑,做如下设计

我们使用 SHA256withRSA 进行签名,下面是一个Java简单例子

什么是数字签名?举例说明

所谓"数字签名"就是通过某种密码运算生成一系列符号及代码组成电子密码进行签名,来代替书写签名或印章,对于这种电子式的签名还可进行技术验证,其验证的准确度是一般手工签名和图章的验证而无法比拟的。"数字签名"是目前电子商务、电子政务中应用最普遍、技术最成熟的、可操作性最强的一种电子签名方法。它采用了规范化的程序和科学化的方法,用于鉴定签名人的身份以及对一项电子数据内容的认可。它还能验证出文件的原文在传输过程中有无变动,确保传输电子文件的完整性、真实性和不可抵赖性。

数字签名在ISO7498-2标准中定义为:"附加在数据单元上的一些数据,或是对数据单元所作的密码变换,这种数据和变换允许数据单元的接收者用以确认数据单元来源和数据单元的完整性,并保护数据,防止被人(例如接收者)进行伪造"。美国电子签名标准(DSS,FIPS186-2)对数字签名作了如下解释:"利用一套规则和一个参数对数据计算所得的结果,用此结果能够确认签名者的身份和数据的完整性"。按上述定义PKI(Public Key Infrastructino 公钥基础设施)提供可以提供数据单元的密码变换,并能使接收者判断数据来源及对数据进行验证。

PKI的核心执行机构是电子认证服务提供者,即通称为认证机构CA(Certificate Authority),PKI签名的核心元素是由CA签发的数字证书。它所提供的PKI服务就是认证、数据完整性、数据保密性和不可否认性。它的作法就是利用证书公钥和与之对应的私钥进行加/解密,并产生对数字电文的签名及验证签名。数字签名是利用公钥密码技术和其他密码算法生成一系列符号及代码组成电子密码进行签名,来代替书写签名和印章;这种电子式的签名还可进行技术验证,其验证的准确度是在物理世界中对手工签名和图章的验证是无法比拟的。这种签名方法可在很大的可信PKI域人群中进行认证,或在多个可信的PKI域中进行交*认证,它特别适用于互联网和广域网上的安全认证和传输。

“数字签名”与普通文本签名的最大区别在于,它可以使用个性鲜明的图形文件,你只要利用扫描仪或作图工具将你的个性签名、印章甚至相片等,制作成BMP文件,就可以当做“数字签名”的素材。

目前可以提供“数字签名”功能的软件很多,用法和原理都大同小异,其中比较常用的有“ OnSign”。安装“OnSign”后,在Word、Outlook等程序的工具栏上,就会出现,“OnSign”的快捷按钮,每次使用时,需输入自己的密码,以确保他人无法盗用。

对于使用了“OnSign”寄出的文件,收件人也需要安装“OnSign”或“OnSign Viewer”,这样才具备了识别“数字签名”的功能。根据“OnSign”的设计,任何文件内容的窜改与拦截,都会让签名失效。因此当对方识别出你的“数字签名”,就能确定这份文件是由你本人所发出的,并且中途没有被窜改或拦截过。当然如果收件人还不放心,也可以单击“数字签名”上的蓝色问号,“OnSign”就会再次自动检查,如果文件有问题,“数字签名”上就会出现红色的警告标志。

在电子邮件使用频繁的网络时代,使用好“数字签名”,就像传统信件中的“挂号信”,无疑为网络传输文件的安全又增加了一道保护屏障。

例子说明:

现在我们就转入正题了。JAVA的数字签名类封装在Signature类(java.security.Signature)中。

接下来,我会编写三个功能(即三个Java类):

a、生成一对密钥,即私钥和公钥,对于密钥的保存可以使用对象流的方式进行保存和传送,也可以使用编码的方式保存;在这里基于方便,我是使用编码方式进行保存的;类名是:GenerateKeyPair.java

b、编写发送者的功能:首先通过私钥加密待输出数据Data,并输出Data和签名后的Data;类名是:SignatureData.java

c、编写接收者的功能:使用发送者的公钥来验证发送过来的加密Data,判断签名的合法性;类名是:VerifySignature.java

关于数字签名算法java和数字签名算法可实现的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-12-10,除非注明,否则均为首码项目网原创文章,转载请注明出处。