「java图像净化」java实现图像处理

博主:adminadmin 2022-12-06 11:18:13 86

今天给各位分享java图像净化的知识,其中也会对java实现图像处理进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

急!!,二值化后的图像,用JAVA中值滤波算法,去除椒盐噪点!!!

椒盐噪声的话一般可以用中值滤波器去除, 中值滤波器很容易实现, 依此遍历图像中每个像素点, 每个像素点与其周围的8个点像素值做一下排序操作, 找到这九个点中的中值点赋给当前遍历点的像素就可以了, 算法很简单吧. 我这有c++的源码, 楼主要想要的话发邮件到我的邮箱769569350@qq.com我可以把程序发给你.

Java图像去噪怎么实现?

一般的图像可以用模糊的方式去除噪点

验证码的噪点,如果是单像素的可以根据周围像素点的颜色判断

其他情况就得用模式识别了。。这个就难了

如何用java去除图片水印?

//运行以下程序即可

public class ImageInit {

BufferedImage image;

private int iw, ih;

private int[] pixels;

public ImageInit(BufferedImage image) {

this.image = image;

iw = image.getWidth();

ih = image.getHeight();

pixels = new int[iw * ih];

}

public BufferedImage changeGrey() {

PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih,

pixels, 0, iw);

try {

pg.grabPixels();

} catch (InterruptedException e) {

e.printStackTrace();

}

// 设定二值化的域值,默认值为100

int grey = 100;

// 对图像进行二值化处理,Alpha值保持不变

ColorModel cm = ColorModel.getRGBdefault();

for (int i = 0; i  iw * ih; i++) {

int red, green, blue;

int alpha = cm.getAlpha(pixels[i]);

if (cm.getRed(pixels[i])  grey) {

red = 255;

} else {

red = 0;

}

if (cm.getGreen(pixels[i])  grey) {

green = 255;

} else {

green = 0;

}

if (cm.getBlue(pixels[i])  grey) {

blue = 255;

} else {

blue = 0;

}

pixels[i] = alpha  24 | red  16 | green  8 | blue; // 通过移位重新构成某一点像素的RGB值

}

// 将数组中的象素产生一个图像

Image tempImg = Toolkit.getDefaultToolkit().createImage(

new MemoryImageSource(iw, ih, pixels, 0, iw));

image = new BufferedImage(tempImg.getWidth(null),

tempImg.getHeight(null), BufferedImage.TYPE_INT_BGR);

image.createGraphics().drawImage(tempImg, 0, 0, null);

return image;

}

public BufferedImage getMedian() {

PixelGrabber pg = new PixelGrabber(image.getSource(), 0, 0, iw, ih,

pixels, 0, iw);

try {

pg.grabPixels();

} catch (InterruptedException e) {

e.printStackTrace();

}

// 对图像进行中值滤波,Alpha值保持不变

ColorModel cm = ColorModel.getRGBdefault();

for (int i = 1; i  ih - 1; i++) {

for (int j = 1; j  iw - 1; j++) {

int red, green, blue;

int alpha = cm.getAlpha(pixels[i * iw + j]);

// int red2 = cm.getRed(pixels[(i - 1) * iw + j]);

int red4 = cm.getRed(pixels[i * iw + j - 1]);

int red5 = cm.getRed(pixels[i * iw + j]);

int red6 = cm.getRed(pixels[i * iw + j + 1]);

// int red8 = cm.getRed(pixels[(i + 1) * iw + j]);

// 水平方向进行中值滤波

if (red4 = red5) {

if (red5 = red6) {

red = red5;

} else {

if (red4 = red6) {

red = red6;

} else {

red = red4;

}

}

} else {

if (red4  red6) {

red = red4;

} else {

if (red5  red6) {

red = red6;

} else {

red = red5;

}

}

}

int green4 = cm.getGreen(pixels[i * iw + j - 1]);

int green5 = cm.getGreen(pixels[i * iw + j]);

int green6 = cm.getGreen(pixels[i * iw + j + 1]);

// 水平方向进行中值滤波

if (green4 = green5) {

if (green5 = green6) {

green = green5;

} else {

if (green4 = green6) {

green = green6;

} else {

green = green4;

}

}

} else {

if (green4  green6) {

green = green4;

} else {

if (green5  green6) {

green = green6;

} else {

green = green5;

}

}

}

// int blue2 = cm.getBlue(pixels[(i - 1) * iw + j]);

int blue4 = cm.getBlue(pixels[i * iw + j - 1]);

int blue5 = cm.getBlue(pixels[i * iw + j]);

int blue6 = cm.getBlue(pixels[i * iw + j + 1]);

// int blue8 = cm.getBlue(pixels[(i + 1) * iw + j]);

// 水平方向进行中值滤波

if (blue4 = blue5) {

if (blue5 = blue6) {

blue = blue5;

} else {

if (blue4 = blue6) {

blue = blue6;

} else {

blue = blue4;

}

}

} else {

if (blue4  blue6) {

blue = blue4;

} else {

if (blue5  blue6) {

blue = blue6;

} else {

blue = blue5;

}

}

}

pixels[i * iw + j] = alpha  24 | red  16 | green  8

| blue;

}

}

// 将数组中的象素产生一个图像

Image tempImg = Toolkit.getDefaultToolkit().createImage(

new MemoryImageSource(iw, ih, pixels, 0, iw));

image = new BufferedImage(tempImg.getWidth(null),

tempImg.getHeight(null), BufferedImage.TYPE_INT_BGR);

image.createGraphics().drawImage(tempImg, 0, 0, null);

return image;

}

public BufferedImage getGrey() {

ColorConvertOp ccp = new ColorConvertOp(

ColorSpace.getInstance(ColorSpace.CS_GRAY), null);

return image = ccp.filter(image, null);

}

// Brighten using a linear formula that increases all color values

public BufferedImage getBrighten() {

RescaleOp rop = new RescaleOp(1.25f, 0, null);

return image = rop.filter(image, null);

}

// Blur by "convolving" the image with a matrix

public BufferedImage getBlur() {

float[] data = { .1111f, .1111f, .1111f, .1111f, .1111f, .1111f,

.1111f, .1111f, .1111f, };

ConvolveOp cop = new ConvolveOp(new Kernel(3, 3, data));

return image = cop.filter(image, null);

}

// Sharpen by using a different matrix

public BufferedImage getSharpen() {

float[] data = { 0.0f, -0.75f, 0.0f, -0.75f, 4.0f, -0.75f, 0.0f,

-0.75f, 0.0f };

ConvolveOp cop = new ConvolveOp(new Kernel(3, 3, data));

return image = cop.filter(image, null);

}

// 11) Rotate the image 180 degrees about its center point

public BufferedImage getRotate() {

AffineTransformOp atop = new AffineTransformOp(

AffineTransform.getRotateInstance(Math.PI,

image.getWidth() / 2, image.getHeight() / 2),

AffineTransformOp.TYPE_NEAREST_NEIGHBOR);

return image = atop.filter(image, null);

}

public BufferedImage getProcessedImg() {

return image;

}

public static void main(String[] args) throws IOException {

String filePath="F:/k7qp5.png";

FileInputStream fin = new FileInputStream(filePath);

BufferedImage bi = ImageIO.read(fin);

ImageInit flt = new ImageInit(bi);

flt.changeGrey();

flt.getGrey();

flt.getBrighten();

bi = flt.getProcessedImg();

String pname = filePath.substring(0, filePath.lastIndexOf("."));

File file = new File(pname + ".jpg");

ImageIO.write(bi, "jpg", file);

}

}

java适合做图像处理吗?

Java图像处理技巧四则

下面代码中用到的sourceImage是一个已经存在的Image对象

图像剪切

对于一个已经存在的Image对象,要得到它的一个局部图像,可以使用下面的步骤:

//import java.awt.*;

//import java.awt.image.*;

Image croppedImage;

ImageFilter cropFilter;

CropFilter =new CropImageFilter(25,30,75,75); //四个参数分别为图像起点坐标和宽高,即CropImageFilter(int x,int y,int width,int height),详细情况请参考API

CroppedImage= Toolkit.getDefaultToolkit().createImage(new FilteredImageSource(sourceImage.getSource(),cropFilter));

如果是在Component的子类中使用,可以将上面的Toolkit.getDefaultToolkit().去掉。FilteredImageSource是一个ImageProducer对象。

图像缩放

对于一个已经存在的Image对象,得到它的一个缩放的Image对象可以使用Image的getScaledInstance方法:

Image scaledImage=sourceImage. getScaledInstance(100,100, Image.SCALE_DEFAULT); //得到一个100X100的图像

Image doubledImage=sourceImage. getScaledInstance(sourceImage.getWidth(this)*2,sourceImage.getHeight(this)*2, Image.SCALE_DEFAULT); //得到一个放大两倍的图像,这个程序一般在一个swing的组件中使用,而类Jcomponent实现了图像观察者接口ImageObserver,所有可以使用this。

//其它情况请参考API

灰度变换

下面的程序使用三种方法对一个彩色图像进行灰度变换,变换的效果都不一样。一般而言,灰度变换的算法是将象素的三个颜色分量使用R*0.3+G*0.59+ B*0.11得到灰度值,然后将之赋值给红绿蓝,这样颜色取得的效果就是灰度的。另一种就是取红绿蓝三色中的最大值作为灰度值。java核心包也有一种算法,但是没有看源代码,不知道具体算法是什么样的,效果和上述不同。

/* GrayFilter.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class GrayFilter extends RGBImageFilter {

int modelStyle;

public GrayFilter() {

modelStyle=GrayModel.CS_MAX;

canFilterIndexColorModel=true;

}

public GrayFilter(int style) {

modelStyle=style;

canFilterIndexColorModel=true;

}

public void setColorModel(ColorModel cm) {

if (modelStyle==GrayModel

else if (modelStyle==GrayModel

}

public int filterRGB(int x,int y,int pixel) {

return pixel;

}

}

/* GrayModel.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class GrayModel extends ColorModel {

public static final int CS_MAX=0;

public static final int CS_FLOAT=1;

ColorModel sourceModel;

int modelStyle;

public GrayModel(ColorModel sourceModel) {

super(sourceModel.getPixelSize());

this.sourceModel=sourceModel;

modelStyle=0;

}

public GrayModel(ColorModel sourceModel,int style) {

super(sourceModel.getPixelSize());

this.sourceModel=sourceModel;

modelStyle=style;

}

public void setGrayStyle(int style) {

modelStyle=style;

}

protected int getGrayLevel(int pixel) {

if (modelStyle==CS_MAX) {

return Math.max(sourceModel.getRed(pixel),Math.max(sourceModel.getGreen(pixel),sourceModel.getBlue(pixel)));

}

else if (modelStyle==CS_FLOAT){

return (int)(sourceModel.getRed(pixel)*0.3+sourceModel.getGreen(pixel)*0.59+sourceModel.getBlue(pixel)*0.11);

}

else {

return 0;

}

}

public int getAlpha(int pixel) {

return sourceModel.getAlpha(pixel);

}

public int getRed(int pixel) {

return getGrayLevel(pixel);

}

public int getGreen(int pixel) {

return getGrayLevel(pixel);

}

public int getBlue(int pixel) {

return getGrayLevel(pixel);

}

public int getRGB(int pixel) {

int gray=getGrayLevel(pixel);

return (getAlpha(pixel)24)+(gray16)+(gray8)+gray;

}

}

如果你有自己的算法或者想取得特殊的效果,你可以修改类GrayModel的方法getGrayLevel()。

色彩变换

根据上面的原理,我们也可以实现色彩变换,这样的效果就很多了。下面是一个反转变换的例子:

/* ReverseColorModel.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class ReverseColorModel extends ColorModel {

ColorModel sourceModel;

public ReverseColorModel(ColorModel sourceModel) {

super(sourceModel.getPixelSize());

this.sourceModel=sourceModel;

}

public int getAlpha(int pixel) {

return sourceModel.getAlpha(pixel);

}

public int getRed(int pixel) {

return ~sourceModel.getRed(pixel);

}

public int getGreen(int pixel) {

return ~sourceModel.getGreen(pixel);

}

public int getBlue(int pixel) {

return ~sourceModel.getBlue(pixel);

}

public int getRGB(int pixel) {

return (getAlpha(pixel)24)+(getRed(pixel)16)+(getGreen(pixel)8)+getBlue(pixel);

}

}

/* ReverseColorModel.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.image.*;

public class ReverseFilter extends RGBImageFilter {

public ReverseFilter() {

canFilterIndexColorModel=true;

}

public void setColorModel(ColorModel cm) {

substituteColorModel(cm,new ReverseColorModel(cm));

}

public int filterRGB(int x,int y,int pixel) {

return pixel;

}

}

要想取得自己的效果,需要修改ReverseColorModel.java中的三个方法,getRed、getGreen、getBlue。

下面是上面的效果的一个总的演示程序。

/*GrayImage.java*/

/*@author:cherami */

/*email:cherami@163.net*/

import java.awt.*;

import java.awt.image.*;

import javax.swing.*;

import java.awt.color.*;

public class GrayImage extends JFrame{

Image source,gray,gray3,clip,bigimg;

BufferedImage bimg,gray2;

GrayFilter filter,filter2;

ImageIcon ii;

ImageFilter cropFilter;

int iw,ih;

public GrayImage() {

ii=new ImageIcon(\"images/11.gif\");

source=ii.getImage();

iw=source.getWidth(this);

ih=source.getHeight(this);

filter=new GrayFilter();

filter2=new GrayFilter(GrayModel.CS_FLOAT);

gray=createImage(new FilteredImageSource(source.getSource(),filter));

gray3=createImage(new FilteredImageSource(source.getSource(),filter2));

cropFilter=new CropImageFilter(5,5,iw-5,ih-5);

clip=createImage(new FilteredImageSource(source.getSource(),cropFilter));

bigimg=source.getScaledInstance(iw*2,ih*2,Image.SCALE_DEFAULT);

MediaTracker mt=new MediaTracker(this);

mt.addImage(gray,0);

try {

mt.waitForAll();

} catch (Exception e) {

}

java中如何清除绘制的图像

可以通过repaint方法来进行重新绘图,也就是清除了当前所绘制的图案。

解释:repaint方法,实际上它是实现的父类update方法,在update方法中paint方法为空操作。所以此时即可实现重新绘制图像的效果。

Java 图像识别 数字图像处理 从一张JPG图片中识别出若干黑色小方块

你需要关注的主要是这个类:java.awt.image.BufferedImage

可以查阅相关的API。

java图像处理技术在《java核心技术8 下卷》中有比较详细的介绍。

相关技术要求和注意事项:RGB标准、ICC配置特性、

建议如果进行像素识别的话可以选取关键点的识别方式、而且确认像素是否符合要求使用RGB的范围识别而非精确识别。

至于具体的识别操作过程,需要你详细定义开始识别的位置标准(规定的或者识别图像获取)、边界标准、大小(识别块得SIZE)、分组(给识别块确定属性)等

java图像净化的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java实现图像处理、java图像净化的信息别忘了在本站进行查找喔。

The End

发布于:2022-12-06,除非注明,否则均为首码项目网原创文章,转载请注明出处。