「java安全通讯」java安全机制

博主:adminadmin 2022-12-05 16:48:06 72

本篇文章给大家谈谈java安全通讯,以及java安全机制对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

java 进程间通讯的有几种方法?

进程间通信的方法主要有以下几种:

  (1)管道(Pipe):管道可用于具有亲缘关系进程间的通信,允许一个进程和另一个与它有共同祖先的进程之间进行通信。

  (2)命名管道(named pipe):命名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关 系 进程间的通信。命名管道在文件系统中有对应的文件名。命名管道通过命令mkfifo或系统调用mkfifo来创建。

  (3)信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送 信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数)。

(4)消息(Message)队列:消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺

  (5)共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。

  (6)内存映射(mapped memory):内存映射允许任何多个进程间通信,每一个使用该机制的进程通过把一个共享的文件映射到自己的进程地址空间来实现它。

  (7)信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。

  (8)套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

而在java中我们实现多线程间通信则主要采用"共享变量"和"管道流"这两种方法

方法一 通过访问共享变量的方式(注:需要处理同步问题)

方法二 通过管道流

其中方法一有两种实现方法,即

方法一a)通过内部类实现线程的共享变量

代码如下:

public class Innersharethread {

public static void main(String[] args) {

Mythread mythread = new Mythread();

mythread.getThread().start();

mythread.getThread().start();

mythread.getThread().start();

mythread.getThread().start();

}

}

class Mythread {

int index = 0;

private class InnerThread extends Thread {

public synchronized void run() {

while (true) {

System.out.println(Thread.currentThread().getName()

+ "is running and index is " + index++);

}

}

}

public Thread getThread() {

return new InnerThread();

}

}

/**

* 通过内部类实现线程的共享变量

*

*/

public class Innersharethread {

public static void main(String[] args) {

Mythread mythread = new Mythread();

mythread.getThread().start();

mythread.getThread().start();

mythread.getThread().start();

mythread.getThread().start();

}

}

class Mythread {

int index = 0;

private class InnerThread extends Thread {

public synchronized void run() {

while (true) {

System.out.println(Thread.currentThread().getName()

+ "is running and index is " + index++);

}

}

}

public Thread getThread() {

return new InnerThread();

}

}

b)通过实现Runnable接口实现线程的共享变量

代码如下:

public class Interfacaesharethread {

public static void main(String[] args) {

Mythread mythread = new Mythread();

new Thread(mythread).start();

new Thread(mythread).start();

new Thread(mythread).start();

new Thread(mythread).start();

}

}

/* 实现Runnable接口 */

class Mythread implements Runnable {

int index = 0;

public synchronized void run() {

while (true)

System.out.println(Thread.currentThread().getName() + "is running and

the index is " + index++);

}

}

/**

* 通过实现Runnable接口实现线程的共享变量

*/

public class Interfacaesharethread {

public static void main(String[] args) {

Mythread mythread = new Mythread();

new Thread(mythread).start();

new Thread(mythread).start();

new Thread(mythread).start();

new Thread(mythread).start();

}

}

/* 实现Runnable接口 */

class Mythread implements Runnable {

int index = 0;

public synchronized void run() {

while (true)

System.out.println(Thread.currentThread().getName() + "is running and

the index is " + index++);

}

}

方法二(通过管道流):

代码如下:

public class CommunicateWhitPiping {

public static void main(String[] args) {

/**

* 创建管道输出流

*/

PipedOutputStream pos = new PipedOutputStream();

/**

* 创建管道输入流

*/

PipedInputStream pis = new PipedInputStream();

try {

/**

* 将管道输入流与输出流连接 此过程也可通过重载的构造函数来实现

*/

pos.connect(pis);

} catch (IOException e) {

e.printStackTrace();

}

/**

* 创建生产者线程

*/

Producer p = new Producer(pos);

/**

* 创建消费者线程

*/

Consumer c = new Consumer(pis);

/**

* 启动线程

*/

p.start();

c.start();

}

}

/**

* 生产者线程(与一个管道输入流相关联)

*

*/

class Producer extends Thread {

private PipedOutputStream pos;

public Producer(PipedOutputStream pos) {

this.pos = pos;

}

public void run() {

int i = 8;

try {

pos.write(i);

} catch (IOException e) {

e.printStackTrace();

}

}

}

/**

* 消费者线程(与一个管道输入流相关联)

*

*/

class Consumer extends Thread {

private PipedInputStream pis;

public Consumer(PipedInputStream pis) {

this.pis = pis;

}

public void run() {

try {

System.out.println(pis.read());

} catch (IOException e) {

e.printStackTrace();

}

}

}

java Socket通信原理

具体如下:

首先socket 通信是基于TCP/IP 网络层上的一种传送方式,我们通常把TCP和UDP称为传输层。其中UDP是一种面向无连接的传输层协议。UDP不关心对端是否真正收到了传送过去的数据。

如果需要检查对端是否收到分组数据包,或者对端是否连接到网络,则需要在应用程序中实现。UDP常用在分组数据较少或多播、广播通信以及视频通信等多媒体领域。

在这里我们不进行详细讨论,这里主要讲解的是基于TCP/IP协议下的socket通信。

socket是基于应用服务与TCP/IP通信之间的一个抽象,他将TCP/IP协议里面复杂的通信逻辑进行分装。

服务端初始化ServerSocket,然后对指定的端口进行绑定,接着对端口及进行监听,通过调用accept方法阻塞。

此时,如果客户端有一个socket连接到服务端,那么服务端通过监听和accept方法可以与客户端进行连接。

Java是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。

Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。

Java具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点。Java可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等。

java 进程间通讯的有几种方法

 JAVA进程间通信的方法主要有以下几种:

(1)管道(Pipe):管道可用于具有亲缘关系进程间的通信,允许一个进程和另一个与它有共同祖先的进程之间进行通信。

(2)命名管道(named pipe):命名管道克服了管道没有名字的限制,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。

(3)信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送 信号给进程本身。

(4)消息(Message)队列:消息队列是消息的链接表,包括Posix消息队列system V消息队列。

(5)共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。

(6)内存映射(mapped memory):内存映射允许任何多个进程间通信,每一个使用该机制的进程通过把一个共享的文件映射到自己的进程地址空间来实现它。

(7)信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。

(8)套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。

如何实现两个java程序之间的相互通讯,不想用Socket

不用也可以。

通讯就是对数据进行交换,数据可以保存在硬盘上。

设置硬盘上的文件为数据沟通的桥梁就可以实现不用Socket进行两个程序间的通讯了(同一主机上)。

更具体一点的实现可以是:

两个程序间要进行通讯(a、b),设置两个文件夹(d://a、d://b),程序a将要发送的消息通过文件的方式放在文件夹a中,b程序的消息放b文件夹,每一个消息都是一个单独的文件,文件名用当前时间命名。

a程序中监控b文件夹中的文件数量,每当文件数量增加便读取新文件所包涵的信息,当文件夹中的文件数量超过10就清空一次文件,防止无用数据一直占着存储空间,b程序和a程序基本一致,只不过监控的文件夹换成了文件夹a。

如果真有这方面的需求,需要用这种方式实现,先做个框架会方便很多。

如何用java语言对即时通讯软件进行加密

一、Java软件加密基本思路

对于应用软件的保护笔者从两个方面进行考虑,第一是阻止盗版使用软件,第二是阻止竞争对手对软件反编译,即阻止对软件的逆向工程。

1、阻止盗版

在软件运行时对自身存在的合法性进行判断,如果认为自身的存在和运行是被授权的、合法的,就运行;否则终止运行。这样即使软件可以被随意复制,只要盗版用户没有相应的授权信息就无法使用软件。

2、阻止反编译

对编译产生的Class文件加密处理,并在运行时进行解密,解密者无法对软件进行反编译。

二、Java软件加密的总体流程

为了保护用Java语言开发的软件,我们设计并实现了一个实用、高强度的加密算法。以下称需要保护的Java软件为“受保护程序”,称对“受保护程序”进行加密保护的软件为“加密程序”。对软件加密保护的流程如图1所示。

三、加密算法分析设计

1、用户信息提取器设计

为了防止用户发布序列号而导致“一次发行,到处都是”的盗版问题,提取用户机器中硬件相关的、具有唯一性的信息——用户计算机的硬盘分区C的序列号,并要求用户将此信息与用户名一起返回,之后用“序列号生成器”根据用户返回信息生成一个唯一合法的软件注册序列号发回用户,用户即可使用此号码注册使用软件。

这个信息提取器使用Winclows 32汇编以一个独立的小程序方式实现,程序代码如图2所示。

2、序列号生成器与序列号合法性判断函数的设计

序列号生成器与序列号合法性判断函数中运用RSA加密算法。在序列号生成器中是使用私钥将用户返回的信息(硬盘序列号,用户名)进行加密得到相应的注册序列号;在序列号合法性判断函数中使用私钥将用户输入的注册序列号解密,再与(硬盘序列号,用户名)进行比较,一致则调用程序装载器将程序其他部分解密装入内存,初始化删环境并运行程序主体;否则退出。

RSA加密算法的实现需要使用大数运算库,我们使用MIRACL大数库来实现RSA计算,序列号生成器的主要代码如下:

char szlnputString[]=”机器码和用户名组成的字符串”;

char szSerial[256]=[0];//用于存放生成的注册码

bign,d,c,m; //MIRACL中的大数类型

mip→IBASE=16; //以16进制模式

n= mlrvar(0); //初始化大数

d= mirvar(0);

c= mirvar(0); //C存放输入的字符串大数

m= mlrva(o);

bytes to big( len, szlnputString,c);

//将输入字符串转换成大数形式并存入变量c中

cinstr(n,”以字符串形成表示的模数”);//初始化模数

cinstr(d,”以字符串形成表示的公钥”)://初始化公钥

powmod(c,d,n,m); //计算m=cdmod n

cotstr(m,szSerial);//m的16进制字符串即为注册码

序列号合法性检测函数的主要代码如下:

char szlnputStringL]=”机器码和用户名组成的字符串”;

char szSerial[ 256]=”用户输入的序列号”

bign,e,c,m; //MIRACL中的大数类型

mip→IBASE=16; //以16进制模式

cinstr(m,szSerial); //将序列号的16进制转成大数形式

cinstr(n,”模数n的字符串形式”);//初始化模数n

cinstr(e,”字符串形式的公钥”);//初始化公钥

if compare(m,n)==-1) //mn时才进行解密

{

powmod(m,e,n,c);//计算m=me mod n

big_to _bytes(0,c,szSerial,0); //转为字符串

return lstrcmp( szlnputString,szSerial);

}

3、强耦合关系的设计

如果在序列号合法性检测函数中简单地使用图3所示流程:

解密者可以使用以下几种手段进行攻击:

(1)修改“判断合法性子函数”的返回指令,让它永远返回正确值,这样可以使用任意的序列号,安装/使用软件。

(2)修改判断后的跳转指令,使程序永远跳到正确的分支运行,效果和上一种一样。

(3)在“判断合法性子函数”之前执行一条跳转指令,绕过判断,直接跳转到“正常执行”分支运行,这样可以不用输入序列号安装/使用软件。

为阻止以上攻击手段,笔者在程序中增加了“序列号合法性检测函数”与程序其他部分“强耦合”(即增强其与程序其他部分的关联度,成为程序整体密不可分的一部分,一旦被修改程序将无法正常工作)的要求(见图1),并且设置一个“完整性检测函数”用于判断相关的代码是否被修改过。当然,基于同样的原因,“完整性检测函数”也必须与程序其他部分存在“强耦合”关系。

强耦合关系通过以下方式建立:

在程序其他部分的函数(例如函数A)中随机的访问需要强耦合的“序列号合法性检测函数”和“完整性检测函数”,在调用时随机的选择使用一个错误的序列号或是用户输入的序列号,并根据返回结果选择执行A中正常的功能代码还是错误退出的功能代码,流程如图4所示。

经过这种改进,如果破解者通过修改代码的方式破解将因“完整性检测”失败导致程序退出;如果使用SMC等技术绕过“序列号合法性判断函数”而直接跳至序列号正确时的执行入口,在后续的运行中,将因为随机的耦合调用失败导致程序退出。破解者要破解软件将不得不跟踪所有进行了耦合调用的函数,这显然是一个艰巨的任务。

4、完整性检测函数的设计

我们使用CRC算法算出需进行完整性检测的文件的校验码,并用RSA加密算法的公钥(不同于序列号合法性检测中的公钥/私钥对)将其加密存放在特定的文件中,在检测时先用CRC算法重新生成需进行完

整性检测的文件的校验码,并用私钥将保存的校验码解密,两者相比较,相等则正常运行;否则退出。

5、程序加载器的设计

与编译成机器码执行的程序不同,Java程序只能由Java虚拟机解释执行,因此程序加载器的工作包括:初始化Java虚拟机;在内存中解密当前要运行的class文件;使解密后的c:lass文件在虚拟机中运行,在

需要时解密另一个class文件。图5是用于初始化JVM的代码:

以上介绍了我们设计的针对Java软件的加密保护方法,其中综合运用了多种加密技术,抗破解强度高;使用纯软件保护技术,成本低。经笔者在Windows系列平台上进行测试,运行稳定,效果良好。

在研宄开发过程中,我们还总结出加密保护软件的一些经验:

1、对关键代码和数据要静态加密,再动态解密执行;要结合具体的工作平台使用反跟踪/调试技术;

2、要充分利用系统的功能,如在Windows下使用DLL文件或驱动程序形式能得到最大的丰又限,可以充分利用系统具有的各种功能;

3、如果可能应该将关键代码存放在不可禚复制的地方;

4、序列号要与机器码等用户信息相关以阻止盐复布序列号;

5、加密流程的合理性比加密算法本身的强度更重要。

java安全通讯的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于java安全机制、java安全通讯的信息别忘了在本站进行查找喔。

The End

发布于:2022-12-05,除非注明,否则均为首码项目网原创文章,转载请注明出处。