「数据治理java」数据治理方案

博主:adminadmin 2022-12-02 11:09:07 81

今天给各位分享数据治理java的知识,其中也会对数据治理方案进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

大数据分析应该掌握哪些基础知识呢?

前言,学大数据要先换电脑:

保证电脑4核8G内存64位操作系统,尽量有ssd做系统盘,否则卡到你丧失信心。硬盘越大越好。

1,语言要求

java刚入门的时候要求javase。

scala是学习spark要用的基本使用即可。

后期深入要求:

java NIO,netty,多线程,ClassLoader,jvm底层及调优等,rpc。

2,操作系统要求

linux 基本的shell脚本的使用。

crontab的使用,最多。

cpu,内存,网络,磁盘等瓶颈分析及状态查看的工具。

scp,ssh,hosts的配置使用。

telnet,ping等网络排查命令的使用

3,sql基本使用

sql是基础,hive,sparksql等都需要用到,况且大部分企业也还是以数据仓库为中心,少不了sql。

sql统计,排序,join,group等,然后就是sql语句调优,表设计等。

4,大数据基本了解

Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等这些框架的作用及基本环境的搭建,要熟练,要会运维,瓶颈分析。

5,mapreduce及相关框架hive,sqoop

深入了解mapreduce的核心思想。尤其是shuffle,join,文件输入格式,map数目,reduce数目,调优等。

6,hive和hbase等仓库

hive和hbase基本是大数据仓库的标配。要回用,懂调优,故障排查。

hbase看浪尖hbase系列文章。hive后期更新。

7,消息队列的使用

kafka基本概念,使用,瓶颈分析。看浪尖kafka系列文章。

8,实时处理系统

storm和spark Streaming

9,spark core和sparksql

spark用于离线分析的两个重要功能。

10,最终方向决策

a),运维。(精通整套系统及故障排查,会写运维脚本啥的。)

b),数据分析。(算法精通)

c),平台开发。(源码精通)

自学还是培训?

无基础的同学,培训之前先搞到视频通学一遍,防止盲目培训跟不上讲师节奏,浪费时间,精力,金钱。

有基础的尽量搞点视频学基础,然后跟群里大牛交流,前提是人家愿意,

想办法跟大牛做朋友才是王道。

大数据专业主要学什么知识?

当前大数据技术有java大数据和Python大数据最最为流行,然后要学习的有Linux Shell、hadoop(HDFS、yam等)、ZooKeeper、Flume、Kafka、Hive、Sqoop、Azkaban、HBase、Scala、Flink、Redis、MySql、数据仓库(分为离线和实时),当然Sql编写能力要多加多加练习,增强经验,数据开发的岗位薪资待遇都是挺不错的,当然也可以有其他岗位可以选择,比如运维、数据分析、数据治理、数仓架构等岗位,实在不行去做数据标注吧,哈哈

大数据开发的经常加班吗

IT行业都加班吧,加多少看情况和个人能力

大数据开发:

1、负责公司大数据产品/项目的后台研发;

2、负责技术预研,产品设计以及文档编写等工作;

3、参与大数据的数据治理和数据处理相关java开发工作;

4、参与海量数据处理,业务数据体系的设计、数据统计、分析及数据建模

大数据开发要处理大规模的数据,目前的各种技术在发展,高效的开发工具大大减轻了大数据开发工程师的工作负担,所以大数据开发工程师的工作虽然不是很轻松,但是也算不上很累,当然加班的情况还是存在的。

突然想起来,加米谷之前一个学大数据开发的学员说过一句话:现在这个社会做什么工作不需要加班呢?反正都是加班,不如选个工资高的加

做大数据开发工程师,加班是肯定会有的。所有的开发的岗位,都不是轻松的工作,不然也不会有那么高的薪资。如果想要拿高薪,也是需要对应的付出的。

应用Spark技术,SoData数据机器人实现快速、通用数据治理

Spark是处理海量数据的快速通用引擎。作为大数据处理技术,Spark经常会被人们拿来与Hadoop比较。

Hadoop已经成了大数据技术的事实标准,Hadoop MapReduce也非常适合于对大规模数据集合进行批处理操作,但是其本身还存在一些缺陷。具体表现在:

1、Hadoop MapRedue的表达能力有限。所有计算都需要转换成Map和 Reduce两个操作,不能适用于所有场景,对于复杂的数据处理过程难以描述。

2、磁盘I/O开销大。Hadoop MapReduce要求每个步骤间的数据序列化到磁盘,所以I/O成本很高,导致交互分析和迭代算法开销很大,而几乎所有的最优化和机器学习都是迭代的。所以,Hadoop MapReduce不适合于交互分析和机器学习。

3、计算延迟高。如果想要完成比较复杂的工作,就必须将一系列的MapReduce作业串联起来然后顺序执行这些作业。每一个作业都是高时延的,而且只有在前一个作业完成之后下一个作业才能开始启动。因此,Hadoop MapReduce不能胜任比较复杂的、多阶段的计算服务。

Spark借鉴Hadoop MapReduce技术发展而来,继承了其分布式并行计算的优点的同时,改进了MapReduce的许多缺陷。具体优势如下:

1、Spark提供广泛的数据集操作类型(20+种),支持Java,Python和Scala API,支持交互式的Python和Scala的shell。比Hadoop更加通用。

2、Spark提供Cache机制来支持需要反复迭代的计算或者多次数据共享,减少数据读取的I/O开销。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速,缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理论任务,特别是机器学习。

3、Spark提供了内存计算,把中间结果放到内存中,带来了更高的迭代运算效率。通过支持有向无环图(DAG)的分布式并行计算的编程框架,减少迭代过程中数据需要写入磁盘的需求,提高处理效率。

此外,Spark还能与Hadoop无缝衔接,Spark可以使用YARN作为它的集群管理器,可以读取HDFS、HBase等一切Hadoop的数据。

Spark在最近几年发展迅速,相较于其他大数据平台或框架,Spark的代码库最为活跃。截止目前,最新发布的版本为Spark3.3.0。

也有许多数据治理工具,为了实现实时、通用的数据治理而采用Spark技术。以飞算推出的SoData数据机器人为例,是一套实时+批次、批流一体、高效的数据开发治理工具,能够帮助企业快速实现数据应用。

相较于传统数据加工流程,SoData数据机器人实现了流批一体数据同步机制,基于Spark和Flink框架进行深度二次开发,实现数据采集、集成、转换、装载、加工、落盘全流程实时+批次处理的极致体验,秒级延迟,稳定高效平均延迟5-10s,快速响应企业数据应用需求。

除了具备Spark数据处理的优势,SoData数据机器人的Spark体系还支持从各种数据源执行SQL生成Spark字典表,边开发边调试的Spark-SQL开发,支持任意结果集输出到各类数据库。可视化的运维、开发方式也能在极大降低数据开发、治理、应用门槛的同时,提升效率。

在某综合医院的信息化建设中,SoData数据机器人曾在5分钟内完成原本需要8-9小时才能完成的数据迁移工作。

目前,SoData数据机器人已应用于金融、医疗、能源等多个行业,将持续通过创新技术,为各行业组织机构带来更优质、快速的数据开发、治理、应用体验。

大数据主要学习什么知识?

分享大数据学习路线:

第一阶段为JAVASE+MYSQL+JDBC

主要学习一些Java语言的概念,如字符、bai流程控制、面向对象、进程线程、枚举反射等,学习MySQL数据库的安装卸载及相关操作,学习JDBC的实现原理以及Linux基础知识,是大数据刚入门阶段。

第二阶段为分布式理论简介

主要讲解CAP理论、数据分布方式、一致性、2PC和3PC、大数据集成架构。涉及的知识点有Consistency一致性、Availability可用性、Partition

tolerance分区容忍性、数据量分布、2PC流程、3PC流程、哈希方式、一致性哈希等。

第三阶段为数据存储与计算(离线场景)

主要讲解协调服务ZK(1T)、数据存储hdfs(2T)、数据存储alluxio(1T)、数据采集flume、数据采集logstash、数据同步Sqoop(0.5T)、数据同步datax(0.5T)、数据同步mysql-binlog(1T)、计算模型MR与DAG(1T)、hive(5T)、Impala(1T)、任务调度Azkaban、任务调度airflow等。

第四部分为数仓建设

主要讲解数仓仓库的历史背景、离线数仓项目-伴我汽车(5T)架构技术解析、多维数据模型处理kylin(3.5T)部署安装、离线数仓项目-伴我汽车升级后加入kylin进行多维分析等;

第五阶段为分布式计算引擎

主要讲解计算引擎、scala语言、spark、数据存储hbase、redis、kudu,并通过某p2p平台项目实现spark多数据源读写。

第六阶段为数据存储与计算(实时场景)

主要讲解数据通道Kafka、实时数仓druid、流式数据处理flink、SparkStreaming,并通过讲解某交通大数让你可以将知识点融会贯通。

第七阶段为数据搜索

主要讲解elasticsearch,包括全文搜索技术、ES安装操作、index、创建索引、增删改查、索引、映射、过滤等。

第八阶段为数据治理

主要讲解数据标准、数据分类、数据建模、图存储与查询、元数据、血缘与数据质量、Hive Hook、Spark Listener等。

第九阶段为BI系统

主要讲解Superset、Graphna两大技术,包括基本简介、安装、数据源创建、表操作以及数据探索分析。

第十阶段为数据挖掘

主要讲解机器学习中的数学体系、Spark Mlib机器学习算法库、Python scikit-learn机器学习算法库、机器学习结合大数据项目。

对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

如何防止java中的内存泄漏

尽管java虚

拟机和垃圾回收机制治理着大部分的内存事务,但是在java软件中还是可能存在内存泄漏的情况。的确,在大型工程中,内存泄漏是一个普遍问题。避免内存泄

漏的第一步,就是要了解他们发生的原因。这篇文章就是要介绍一些常见的缺陷,然后提供一些非常好的实践例子来指导你写出没有内存泄漏的代码。一旦你的程序

存在内存泄漏,要查明代码中引起泄漏的原因是很困难的。同时这篇文章也要介绍一个新的工具来查找内存泄漏,然后指明发生的根本原因。这个工具轻易上手,可

以让你找到产品级系统中的内存泄漏。

垃圾回收(GC)的角色

虽然垃圾回收关心着大部分的

问题,包括内存治理,使得程序员的任务显得更加轻松,但是程序员还是可能犯些错误导致内存泄漏问题。GC(垃圾回收)通过递归对所有从“根”对象(堆栈中

的对象,静态数据成员,JNI句柄等等)继续下来的引用进行工作,然后标记所有可以访问的活动着的对象。而这些对象变成了程序唯一能够操纵的对象,其他的

对象都被释放了。因为GC使得程序不能够访问那些被释放的对象,所以这样做是安全的。

内存治理可以说是自动的,但是这并没有让程

序员脱离内存治理问题。比方说,对于内存的分配(还有释放)总是存在一定的开销,尽管这些开销对程序员来说是隐含的。一个程序假如创建了很多对象,那么它

就要比完成相同任务而创建了较少对象的程序执行的速度慢(假如其他的条件都相同)。

文章更多想说的,导致内存泄漏主要的原因是,

先前申请了内存空间而忘记了释放。假如程序中存在对无用对象的引用,那么这些对象就会驻留内存,消耗内存,因为无法让垃圾回收器验证这些对象是否不再需

要。正如我们前面看到的,假如存在对象的引用,这个对象就被定义为“活动的”,同时不会被释放。要确定对象所占内存将被回收,程序员就要务必确认该对象不

再会被使用。典型的做法就是把对象数据成员设为null或者从集合中移除该对象。注重,当局部变量不需要时,不需明显的设为null,因为一个方法执行完

毕时,这些引用会自动被清理。

从更高一个层次看,这就是所有存在内存管的语言对内存泄漏所考虑的事情,剩余的对象引用将不再会被使用。

典型的泄漏

既然我们知道了在java中确实会存在内存泄漏,那么就让我们看一些典型的泄漏,并找出他们发生的原因。

全局集合

在大型应用程序中存在各种各样的全局数据仓库是很普遍的,比如一个JNDI-tree或者一个session table。在这些情况下,注重力就被放在了治理数据仓库的大小上。当然是有一些适当的机制可以将仓库中的无用数据移除。

可以有很多不同的解决形式,其中最常用的是一种周期运行的清除作业。这个作业会验证仓库中的数据然后清除一切不需要的数据。

另一个办法是计算引用的数量。集合负责跟踪集合中每个元素的引用者数量。这要求引用者通知集合什么时候已经对元素处理完毕。当引用者的数目为零时,就可以移除集合中的相关元素。

高速缓存

高速缓存是一种用来快速查找已经执行过的操作结果的数据结构。因此,假如一个操作执行很慢的话,你可以先把普通输入的数据放入高速缓存,然后过些时间再调用高速缓存中的数据。

高速缓存多少还有一点动态实现的意思,当数据操作完毕,又被送入高速缓存。一个典型的算法如下所示:

1. 检查结果是否在高速缓存中,存在则返回结果;

2. 假如结果不在,那么计算结果;

3. 将结果放入高速缓存,以备将来的操作调用。

这个算法的问题(或者说潜在的内存泄漏)在最后一步。假如操作是分别多次输入,那么存入高速缓存的内容将会非常大。很明显这个方法不可取。

为了避免这种潜在的致命错误设计,程序就必须确定高速缓存在他所使用的内存中有一个上界。因此,更好的算法是:

1. 检查结果是否在高速缓存中,存在则返回结果;

2. 假如结果不在,那么计算结果;

3. 假如高速缓存所占空间过大,移除缓存中旧的结果;

4. 将结果放入高速缓存,以备将来的操作调用。

通过不断的从缓存中移除旧的结果,我们可以假设,将来,最新输入的数据可能被重用的几率要远远大于旧的结果。这通常是一个不错的设想。

这个新的算法会确保高速缓存的容量在预先确定的范围内。精确的范围是很难计算的,因为缓存中的对象存在引用时将继续有效。正确的划分高速缓存的大小是一个复杂的任务,你必须权衡可使用内存大小和数据快速存取之间的矛盾。

另一个解决这个问题的途径是使用java.lang.ref.SoftReference类来将对象放入高速缓存。这个方法可以保证当虚拟机用完内存或者需要更多堆的时候,可以释放这些对象的引用。

类装载器

 

 Java类装载器创建就存在很多导致内存泄漏的漏洞。由于类装载器的复杂结构,使得很难得到内存泄漏的透视图。这些困难不仅仅是由于类装载器只与“普通

的”对象引用有关,同时也和对象内部的引用有关,比如数据变量,方法和各种类。这意味着只要存在对数据变量,方法,各种类和对象的类装载器,那么类装载器

将驻留在JVM中。既然类装载器可以同很多的类关联,同时也可以和静态数据变量关联,那么相当多的内存就可能发生泄漏。

定位内存泄漏

 

 经常地,程序内存泄漏的最初迹象发生在出错之后,在你的程序中得到一个OutOfMemoryError。这种典型的情况发生在产品环境中,而在那里,

你希望内存泄漏尽可能的少,调试的可能性也达到最小。也许你的测试环境和产品的系统环境不尽相同,导致泄露的只会在产品中暴露。这种情况下,你需要一个低

负荷的工具来监听和寻找内存泄漏。同时,你还需要把这个工具同你的系统联系起来,而不需要重新启动他或者机械化你的代码。也许更重要的是,当你做分析的时

候,你需要能够同工具分离而使得系统不会受到干扰。

一个OutOfMemoryError经常是内存泄漏的一个标志,有可能应用

程序的确用了太多的内存;这个时候,你既不能增加JVM的堆的数量,也不能改变你的程序而使得他减少内存使用。但是,在大多数情况下,一个

OutOfMemoryError是内存泄漏的标志。一个解决办法就是继续监听GC的活动,看看随时间的流逝,内存使用量是否会增加,假如有,程序中一定

存在内存泄漏。

具体输出

有很多办法来监听垃圾回收器的活动。也许运用最广泛的就是以:-Xverbose:gc选项运行JVM,然后观察输出结果一段时间。

[memory] 10.109-10.235: GC 65536K-16788K (65536K), 126.000 ms

箭头后的值(在这个例子中 16788K)是垃圾回收后堆的使用量。

控制台

观察这些无尽的GC具体统计输出是一件非常单调乏味的事情。好在有一些工具来代替我们做这些事情。The JRockit Management Console可以用图形的方式输出堆的使用量。通过观察图像,我们可以很方便的观察堆的使用量是否伴随时间增长。

 

Figure 1. The JRockit Management Console

治理控制台甚至可以配置成在堆使用量出现问题(或者其他的事件发生)时向你发送邮件。这个显然使得监控内存泄漏更加轻易。

内存泄漏探测工具

 

 有很多专门的内存泄漏探测工具。其中The JRockit Memory Leak

Detector可以供来观察内存泄漏也可以针对性地找到泄漏的原因。这个强大的工具被紧密地集成在JRockit

JVM中,可以提供最低可能的内存事务也可以轻松的访问虚拟机的堆。

专门工具的优势

一旦

你知道程序中存在内存泄漏,你需要更专业的工具来查明为什么这里会有泄漏。而JVM是不可能告诉你的。现在有很多工具可以利用了。这些工具本质上主要通过

两种方法来得到JVM的存储系统信息的:JVMTI和字节码仪器。Java虚拟机工具接口(JVMTI)和他的原有形式JVMPI(压型接口,PRofiling Interface)都是标准接口,作为外部工具同JVM进行通信,搜集JVM的信息。字节码仪器则是引用通过探针获得工具所需的字节信息的预处理技术。

 

 通过这些技术来侦测内存泄漏存在两个缺点,而这使得他们在产品级环境中的运用不够理想。首先,根据两者对内存的使用量和内存事务性能的降级是不可以忽略

的。从JVM获得的堆的使用量信息需要在工具中导出,收集和处理。这意味着要分配内存。按照JVM的性能导出信息是需要开销的,垃圾回收器在搜集信息的时

候是运行的非常缓慢的。另一个缺点就是,这些工具所需要的信息是关系到JVM的。让工具在JVM开始运行的时候和它关联,而在分析的时候,分离工具而保持

JVM运行,这显然是不可能的。

既然JRockit Memory Leak

Detector是被集成到JVM中的,那么以上两种缺点就不再存在。首先,大部分的处理和分析都是在JVM中完成的,所以就不再需要传送或重建任何数

据。处理也可以建立在垃圾回收器的基础上,即提高速度。再有,内存泄漏侦测器可以同一个运行的JVM关联和分离,只要JVM在开始的时候伴随着

–Xmanagement选项(通过远程JMX接口答应监听和治理JVM)。当工具分离以后,工具不会遗留任何东西在JVM中;JVM就可以全速运行代码

就似乎工具关联之前一样。

数据治理java的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于数据治理方案、数据治理java的信息别忘了在本站进行查找喔。

The End

发布于:2022-12-02,除非注明,否则均为首码项目网原创文章,转载请注明出处。