包含javapark中断的词条

博主:adminadmin 2022-12-01 11:10:09 50

今天给各位分享javapark中断的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

java中多线程使用lock锁 其中一个使用unlock方法为什么锁就失效了

Java中Lock,tryLock,lockInterruptibly的区别如下:

一、 lock()方法

使用lock()获取锁,若获取成功,标记下是该线程获取到了锁(用于锁重入),然后返回。若获取失败,这时跑一个for循环,循环中先将线程阻塞放入等待队列,当被调用signal()时线程被唤醒,这时进行锁竞争(因为默认使用的是非公平锁),如果此时用CAS获取到了锁那么就返回,如果没获取到那么再次放入等待队列,等待唤醒,如此循环。其间就算外部调用了interrupt(),循环也会继续走下去。一直到当前线程获取到了这个锁,此时才处理interrupt标志,若有,则执行 Thread.currentThread().interrupt(),结果如何取决于外层的处理。lock()最终执行的方法如下:

[java] view plain copy

final boolean acquireQueued(final Node node, int arg) {

boolean failed = true;

try {

boolean interrupted = false;

for (;;) {

final Node p = node.predecessor();

if (p == head tryAcquire(arg)) { //如果竞争得到了锁

setHead(node);

p.next = null; // help GC

failed = false;

return interrupted; //获取成功返回interrupted标志

}

// 只修改标志位,不做其他处理

if (shouldParkAfterFailedAcquire(p, node) parkAndCheckInterrupt())

interrupted = true;

}

} finally {

if (failed)

cancelAcquire(node);

}

}

其中parkAndCheckInterrupt()调用了LockSupport.park(),该方法使用Unsafe类将进程阻塞并放入等待队列,等待唤醒,和await()有点类似。

可以看到循环中检测到了interrupt标记,但是仅做 interrupted = true 操作,直到获取到了锁,才return interrupted,然后处理如下

[java] view plain copy

public final void acquire(int arg) {

if (!tryAcquire(arg) acquireQueued(addWaiter(Node.EXCLUSIVE), arg))

selfInterrupt(); // 执行Thread.currentThread().interrupt()

}

二、 lockInterruptibly()方法

和lock()相比,lockInterruptibly()只有略微的修改,for循环过程中,如果检测到interrupt标志为true,则立刻抛出InterruptedException异常,这时程序变通过异常直接返回到最外层了,又外层继续处理,因此使用lockInterruptibly()时必须捕捉异常。lockInterruptibly()最终执行的方法如下:

[java] view plain copy

private void doAcquireInterruptibly(int arg)

throws InterruptedException {

final Node node = addWaiter(Node.EXCLUSIVE);

boolean failed = true;

try {

for (;;) {

final Node p = node.predecessor();

if (p == head tryAcquire(arg)) {

setHead(node);

p.next = null; // help GC

failed = false;

return; //获取成功返回

}

if (shouldParkAfterFailedAcquire(p, node)

parkAndCheckInterrupt())

throw new InterruptedException(); //直接抛出异常

}

} finally {

if (failed)

cancelAcquire(node);

}

}

三、 tryLock()方法

使用tryLock()尝试获取锁,若获取成功,标记下是该线程获取到了锁,然后返回true;若获取失败,此时直接返回false,告诉外层没有获取到锁,之后的操作取决于外层,代码如下:

[java] view plain copy

final boolean nonfairTryAcquire(int acquires) {

final Thread current = Thread.currentThread();

int c = getState();

if (c == 0) {

if (compareAndSetState(0, acquires)) {

setExclusiveOwnerThread(current);

return true;

}

}

else if (current == getExclusiveOwnerThread()) {

int nextc = c + acquires;

if (nextc 0) // overflow

throw new Error("Maximum lock count exceeded");

setState(nextc);

return true;

}

return false;

}

java中pack()方法是什么意思

这个方法就是依据你放置的组件设定窗口的大小 使之正好能容纳你放置的所有组件

java并发包源码怎么读

1. 各种同步控制工具的使用

1.1 ReentrantLock

ReentrantLock感觉上是synchronized的增强版,synchronized的特点是使用简单,一切交给JVM去处理,但是功能上是比较薄弱的。在JDK1.5之前,ReentrantLock的性能要好于synchronized,由于对JVM进行了优化,现在的JDK版本中,两者性能是不相上下的。如果是简单的实现,不要刻意去使用ReentrantLock。

相比于synchronized,ReentrantLock在功能上更加丰富,它具有可重入、可中断、可限时、公平锁等特点。

首先我们通过一个例子来说明ReentrantLock最初步的用法:

package test;

import java.util.concurrent.locks.ReentrantLock;public class Test implements Runnable{ public static ReentrantLock lock = new ReentrantLock(); public static int i = 0;

@Override public void run() { for (int j = 0; j 10000000; j++)

{ lock.lock(); try

{

i++;

} finally

{ lock.unlock();

}

}

}

public static void main(String[] args) throws InterruptedException {

Test test = new Test();

Thread t1 = new Thread(test);

Thread t2 = new Thread(test);

t1.start();

t2.start();

t1.join();

t2.join();

System.out.println(i);

}

}

有两个线程都对i进行++操作,为了保证线程安全,使用了 ReentrantLock,从用法上可以看出,与 synchronized相比,ReentrantLock就稍微复杂一点。因为必须在finally中进行解锁操作,如果不在 finally解锁,有可能代码出现异常锁没被释放,而synchronized是由JVM来释放锁。

那么ReentrantLock到底有哪些优秀的特点呢?

1.1.1 可重入

单线程可以重复进入,但要重复退出

lock.lock();

lock.lock();try{

i++;

}

finally{

lock.unlock();

lock.unlock();

}

由于ReentrantLock是重入锁,所以可以反复得到相同的一把锁,它有一个与锁相关的获取计数器,如果拥有锁的某个线程再次得到锁,那么获取计数器就加1,然后锁需要被释放两次才能获得真正释放(重入锁)。这模仿了 synchronized 的语义;如果线程进入由线程已经拥有的监控器保护的 synchronized 块,就允许线程继续进行,当线程退出第二个(或者后续) synchronized 块的时候,不释放锁,只有线程退出它进入的监控器保护的第一个synchronized 块时,才释放锁。

public class Child extends Father implements Runnable{    final static Child child = new Child();//为了保证锁唯一

public static void main(String[] args) {        for (int i = 0; i 50; i++) {            new Thread(child).start();

}

}

public synchronized void doSomething() {

System.out.println("1child.doSomething()");

doAnotherThing(); // 调用自己类中其他的synchronized方法

}

private synchronized void doAnotherThing() {        super.doSomething(); // 调用父类的synchronized方法

System.out.println("3child.doAnotherThing()");

}

@Override

public void run() {

child.doSomething();

}

}class Father {    public synchronized void doSomething() {

System.out.println("2father.doSomething()");

}

}

我们可以看到一个线程进入不同的 synchronized方法,是不会释放之前得到的锁的。所以输出还是顺序输出。所以synchronized也是重入锁

输出:

1child.doSomething()

2father.doSomething()

3child.doAnotherThing()

1child.doSomething()

2father.doSomething()

3child.doAnotherThing()

1child.doSomething()

2father.doSomething()

3child.doAnotherThing()

...

1.1.2.可中断

与synchronized不同的是,ReentrantLock对中断是有响应的。中断相关知识查看[高并发Java 二] 多线程基础

普通的lock.lock()是不能响应中断的,lock.lockInterruptibly()能够响应中断。

我们模拟出一个死锁现场,然后用中断来处理死锁

package test;import java.lang.management.ManagementFactory;import java.lang.management.ThreadInfo;import java.lang.management.ThreadMXBean;import java.util.concurrent.locks.ReentrantLock;public class Test implements Runnable{ public static ReentrantLock lock1 = new ReentrantLock(); public static ReentrantLock lock2 = new ReentrantLock(); int lock; public Test(int lock)

{ this.lock = lock;

} @Override

public void run()

{ try

{ if (lock == 1)

{

lock1.lockInterruptibly(); try

{

Thread.sleep(500);

} catch (Exception e)

{ // TODO: handle exception

}

lock2.lockInterruptibly();

} else

{

lock2.lockInterruptibly(); try

{

Thread.sleep(500);

} catch (Exception e)

{ // TODO: handle exception

}

lock1.lockInterruptibly();

}

} catch (Exception e)

{ // TODO: handle exception

} finally

{ if (lock1.isHeldByCurrentThread())

{

lock1.unlock();

} if (lock2.isHeldByCurrentThread())

{

lock2.unlock();

}

System.out.println(Thread.currentThread().getId() + ":线程退出");

}

} public static void main(String[] args) throws InterruptedException {

Test t1 = new Test(1);

Test t2 = new Test(2);

Thread thread1 = new Thread(t1);

Thread thread2 = new Thread(t2);

thread1.start();

thread2.start();

Thread.sleep(1000); //DeadlockChecker.check();

} static class DeadlockChecker

{ private final static ThreadMXBean mbean = ManagementFactory

.getThreadMXBean(); final static Runnable deadlockChecker = new Runnable()

{ @Override

public void run()

{ // TODO Auto-generated method stub

while (true)

{ long[] deadlockedThreadIds = mbean.findDeadlockedThreads(); if (deadlockedThreadIds != null)

{

ThreadInfo[] threadInfos = mbean.getThreadInfo(deadlockedThreadIds); for (Thread t : Thread.getAllStackTraces().keySet())

{ for (int i = 0; i threadInfos.length; i++)

{ if(t.getId() == threadInfos[i].getThreadId())

{

t.interrupt();

}

}

}

} try

{

Thread.sleep(5000);

} catch (Exception e)

{ // TODO: handle exception

}

}

}

};

public static void check()

{

Thread t = new Thread(deadlockChecker);

t.setDaemon(true);

t.start();

}

}

}

上述代码有可能会发生死锁,线程1得到lock1,线程2得到lock2,然后彼此又想获得对方的锁。

我们用jstack查看运行上述代码后的情况

的确发现了一个死锁。

DeadlockChecker.check();方法用来检测死锁,然后把死锁的线程中断。中断后,线程正常退出。

1.1.3.可限时

超时不能获得锁,就返回false,不会永久等待构成死锁

使用lock.tryLock(long timeout, TimeUnit unit)来实现可限时锁,参数为时间和单位。

举个例子来说明下可限时:

package test;import java.util.concurrent.TimeUnit;import java.util.concurrent.locks.ReentrantLock;public class Test implements Runnable{ public static ReentrantLock lock = new ReentrantLock(); @Override

public void run()

{ try

{ if (lock.tryLock(5, TimeUnit.SECONDS))

{

Thread.sleep(6000);

} else

{

System.out.println("get lock failed");

}

} catch (Exception e)

{

} finally

{ if (lock.isHeldByCurrentThread())

{

lock.unlock();

}

}

}

public static void main(String[] args)

{

Test t = new Test();

Thread t1 = new Thread(t);

Thread t2 = new Thread(t);

t1.start();

t2.start();

}

}

使用两个线程来争夺一把锁,当某个线程获得锁后,sleep6秒,每个线程都只尝试5秒去获得锁。

所以必定有一个线程无法获得锁。无法获得后就直接退出了。

输出:

get lock failed

1.1.4.公平锁

使用方式:

public ReentrantLock(boolean fair) public static ReentrantLock fairLock = new ReentrantLock(true);

一般意义上的锁是不公平的,不一定先来的线程能先得到锁,后来的线程就后得到锁。不公平的锁可能会产生饥饿现象。

公平锁的意思就是,这个锁能保证线程是先来的先得到锁。虽然公平锁不会产生饥饿现象,但是公平锁的性能会比非公平锁差很多。

1.2 Condition

Condition与ReentrantLock的关系就类似于synchronized与Object.wait()/signal()

await()方法会使当前线程等待,同时释放当前锁,当其他线程中使用signal()时或者signalAll()方法时,线 程会重新获得锁并继续执行。或者当线程被中断时,也能跳出等待。这和Object.wait()方法很相似。

awaitUninterruptibly()方法与await()方法基本相同,但是它并不会再等待过程中响应中断。 singal()方法用于唤醒一个在等待中的线程。相对的singalAll()方法会唤醒所有在等待中的线程。这和Obejct.notify()方法很类似。

这里就不再详细介绍了。举个例子来说明:

package test;

import java.util.concurrent.locks.Condition;

import java.util.concurrent.locks.ReentrantLock;public class Test implements Runnable{ public static ReentrantLock lock = new ReentrantLock(); public static Condition condition = lock.newCondition();

@Override public void run() { try

{ lock.lock();

condition.await();

System.out.println("Thread is going on");

} catch (Exception e)

{

e.printStackTrace();

} finally

{ lock.unlock();

}

}

public static void main(String[] args) throws InterruptedException {

Test t = new Test();

Thread thread = new Thread(t);

thread.start();

Thread.sleep(2000);

lock.lock();

condition.signal(); lock.unlock();

}

}

上述例子很简单,让一个线程await住,让主线程去唤醒它。condition.await()/signal只能在得到锁以后使用。

1.3.Semaphore

对于锁来说,它是互斥的排他的。意思就是,只要我获得了锁,没人能再获得了。

而对于Semaphore来说,它允许多个线程同时进入临界区。可以认为它是一个共享锁,但是共享的额度是有限制的,额度用完了,其他没有拿到额度的线程还是要阻塞在临界区外。当额度为1时,就相等于lock

下面举个例子:

package test;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Semaphore;public class Test implements Runnable{ final Semaphore semaphore = new Semaphore(5); @Override

public void run()

{ try

{

semaphore.acquire();

Thread.sleep(2000);

System.out.println(Thread.currentThread().getId() + " done");

} catch (Exception e)

{

e.printStackTrace();

}finally {

semaphore.release();

}

}

public static void main(String[] args) throws InterruptedException {

ExecutorService executorService = Executors.newFixedThreadPool(20); final Test t = new Test(); for (int i = 0; i 20; i++)

{

executorService.submit(t);

}

}

}

有一个20个线程的线程池,每个线程都去 Semaphore的许可,Semaphore的许可只有5个,运行后可以看到,5个一批,一批一批地输出。

当然一个线程也可以一次申请多个许可

public void acquire(int permits) throws InterruptedException

1.4 ReadWriteLock

ReadWriteLock是区分功能的锁。读和写是两种不同的功能,读-读不互斥,读-写互斥,写-写互斥。

这样的设计是并发量提高了,又保证了数据安全。

使用方式:

private static ReentrantReadWriteLock readWriteLock=new ReentrantReadWriteLock();

private static Lock readLock = readWriteLock.readLock();

private static Lock writeLock = readWriteLock.writeLock();

详细例子可以查看 Java实现生产者消费者问题与读者写者问题,这里就不展开了。

1.5 CountDownLatch

倒数计时器

一种典型的场景就是火箭发射。在火箭发射前,为了保证万无一失,往往还要进行各项设备、仪器的检查。 只有等所有检查完毕后,引擎才能点火。这种场景就非常适合使用CountDownLatch。它可以使得点火线程

,等待所有检查线程全部完工后,再执行

使用方式:

static final CountDownLatch end = new CountDownLatch(10);

end.countDown();

end.await();

示意图:

一个简单的例子:

package test;import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;public class Test implements Runnable{ static final CountDownLatch countDownLatch = new CountDownLatch(10); static final Test t = new Test(); @Override

public void run()

{ try

{

Thread.sleep(2000);

System.out.println("complete");

countDownLatch.countDown();

} catch (Exception e)

{

e.printStackTrace();

}

}

public static void main(String[] args) throws InterruptedException {

ExecutorService executorService = Executors.newFixedThreadPool(10); for (int i = 0; i 10; i++)

{

executorService.execute(t);

}

countDownLatch.await();

System.out.println("end");

executorService.shutdown();

}

}

主线程必须等待10个线程全部执行完才会输出"end"。

1.6 CyclicBarrier

和CountDownLatch相似,也是等待某些线程都做完以后再执行。与CountDownLatch区别在于这个计数器可以反复使用。比如,假设我们将计数器设置为10。那么凑齐第一批1 0个线程后,计数器就会归零,然后接着凑齐下一批10个线程

使用方式:

public CyclicBarrier(int parties, Runnable barrierAction) barrierAction就是当计数器一次计数完成后,系统会执行的动作await()

示意图:

下面举个例子:

package test;import java.util.concurrent.CyclicBarrier;public class Test implements Runnable{ private String soldier; private final CyclicBarrier cyclic; public Test(String soldier, CyclicBarrier cyclic)

{ this.soldier = soldier; this.cyclic = cyclic;

} @Override

public void run()

{ try

{ //等待所有士兵到齐

cyclic.await();

dowork(); //等待所有士兵完成工作

cyclic.await();

} catch (Exception e)

{ // TODO Auto-generated catch block

e.printStackTrace();

}

} private void dowork()

{ // TODO Auto-generated method stub

try

{

Thread.sleep(3000);

} catch (Exception e)

{ // TODO: handle exception

}

System.out.println(soldier + ": done");

} public static class BarrierRun implements Runnable

{ boolean flag; int n; public BarrierRun(boolean flag, int n)

{ super(); this.flag = flag; this.n = n;

} @Override

public void run()

{ if (flag)

{

System.out.println(n + "个任务完成");

} else

{

System.out.println(n + "个集合完成");

flag = true;

}

}

} public static void main(String[] args)

{ final int n = 10;

Thread[] threads = new Thread[n]; boolean flag = false;

CyclicBarrier barrier = new CyclicBarrier(n, new BarrierRun(flag, n));

System.out.println("集合"); for (int i = 0; i n; i++)

{

System.out.println(i + "报道");

threads[i] = new Thread(new Test("士兵" + i, barrier));

threads[i].start();

}

}

}

打印结果:

集合

士兵5: done士兵7: done士兵8: done士兵3: done士兵4: done士兵1: done士兵6: done士兵2: done士兵0: done士兵9: done10个任务完成

1.7 LockSupport

提供线程阻塞原语

和suspend类似

LockSupport.park();

LockSupport.unpark(t1);

与suspend相比 不容易引起线程冻结

LockSupport的思想呢,和 Semaphore有点相似,内部有一个许可,park的时候拿掉这个许可,unpark的时候申请这个许可。所以如果unpark在park之前,是不会发生线程冻结的。

下面的代码是[高并发Java 二] 多线程基础中suspend示例代码,在使用suspend时会发生死锁。

而使用 LockSupport则不会发生死锁。

另外

park()能够响应中断,但不抛出异常。中断响应的结果是,park()函数的返回,可以从Thread.interrupted()得到中断标志。

在JDK当中有大量地方使用到了park,当然LockSupport的实现也是使用unsafe.park()来实现的。

public static void park() {        unsafe.park(false, 0L);

}

1.8 ReentrantLock 的实现

下面来介绍下ReentrantLock的实现,ReentrantLock的实现主要由3部分组成:

CAS状态

等待队列

park()

ReentrantLock的父类中会有一个state变量来表示同步的状态

/**

    * The synchronization state.

    */

   private volatile int state;

通过CAS操作来设置state来获取锁,如果设置成了1,则将锁的持有者给当前线程

final void lock() {            if (compareAndSetState(0, 1))

               setExclusiveOwnerThread(Thread.currentThread());            else

               acquire(1);

       }

如果拿锁不成功,则会做一个申请

public final void acquire(int arg) {        if (!tryAcquire(arg)

           acquireQueued(addWaiter(Node.EXCLUSIVE), arg))

           selfInterrupt();

   }

首先,再去申请下试试看tryAcquire,因为此时可能另一个线程已经释放了锁。

如果还是没有申请到锁,就addWaiter,意思是把自己加到等待队列中去

其间还会有多次尝试去申请锁,如果还是申请不到,就会被挂起

private final boolean parkAndCheckInterrupt() {

       LockSupport.park(this);        return Thread.interrupted();

   }

同理,如果在unlock操作中,就是释放了锁,然后unpark,这里就不具体讲了。

2. 并发容器及典型源码分析

2.1 ConcurrentHashMap

我们知道HashMap不是一个线程安全的容器,最简单的方式使HashMap变成线程安全就是使用Collections.synchronizedMap,它是对HashMap的一个包装

public static Map m=Collections.synchronizedMap(new HashMap());

同理对于List,Set也提供了相似方法。

但是这种方式只适合于并发量比较小的情况。

我们来看下synchronizedMap的实现

它会将HashMap包装在里面,然后将HashMap的每个操作都加上synchronized。

由于每个方法都是获取同一把锁(mutex),这就意味着,put和remove等操作是互斥的,大大减少了并发量。

下面来看下ConcurrentHashMap是如何实现的

在 ConcurrentHashMap内部有一个Segment段,它将大的HashMap切分成若干个段(小的HashMap),然后让数据在每一段上Hash,这样多个线程在不同段上的Hash操作一定是线程安全的,所以只需要同步同一个段上的线程就可以了,这样实现了锁的分离,大大增加了并发量。

在使用ConcurrentHashMap.size时会比较麻烦,因为它要统计每个段的数据和,在这个时候,要把每一个段都加上锁,然后再做数据统计。这个就是把锁分离后的小小弊端,但是size方法应该是不会被高频率调用的方法。

在实现上,不使用synchronized和lock.lock而是尽量使用trylock,同时在HashMap的实现上,也做了一点优化。这里就不提了。

2.2 BlockingQueue

BlockingQueue不是一个高性能的容器。但是它是一个非常好的共享数据的容器。是典型的生产者和消费者的实现。

Java线程状态中BLOCKED跟WAITING有什么区别

BLOCKED状态

线程处于BLOCKED状态的场景。

当前线程在等待一个monitor lock,比如等待执行synchronized代码块或者使用synchronized标记的方法。

在synchronized块中循环调用Object类型的wait方法,如下是样例

synchronized(this)

{

while (flag)

{

obj.wait();

}

// some other code

}

WAITING状态

线程处于WAITING状态的场景。

调用Object对象的wait方法,但没有指定超时值。

调用Thread对象的join方法,但没有指定超时值。

调用LockSupport对象的park方法。

提到WAITING状态,顺便提一下TIMED_WAITING状态的场景。

TIMED_WAITING状态

线程处于TIMED_WAITING状态的场景。

调用Thread.sleep方法。

调用Object对象的wait方法,指定超时值。

调用Thread对象的join方法,指定超时值。

调用LockSupport对象的parkNanos方法。

调用LockSupport对象的parkUntil方法。

LockSupport中的park与unpark

LockSupport中提供一个许可,如果存在许可,会立刻返回,也许会被马上消费掉,如果没有许可,则会被马上阻塞,调用unpark的时候,如果许可本身不可用,则会使得许可可用

许可只有一个 不能累加

park函数作用

park用于挂起当前线程,如果许可可用,会立马返回,并消费掉许可。

park(Object): 恢复的条件为 1:线程调用了unpark; 2:其它线程中断了线程;3:发生了不可预料的事情

parkNanos(Object blocker, long nanos):恢复的条件为 1:线程调用了unpark; 2:其它线程中断了线程;3:发生了不可预料的事情;4:过期时间到了

parkUntil(Object blocker, long deadline):恢复的条件为 1:线程调用了unpark; 2:其它线程中断了线程;3:发生了不可预料的事情;4:指定的deadLine已经到了

最终都调用了Unsafe.park()方法。

Object的waitify相比

wait,notify和notifyAll必须配合Object Monitor一起使用,而unpark不必

park unpark是以线程为单位来【阻塞】和【唤醒】线程,而notify只能随机唤醒一个等待线程,

notifyAll是唤醒所有等待线程,就不那么【精确】

park unpark可以先unpark,而wait notify不能先notify

java线程中的几种状态以及相互转换

NEW: 线程创建之后,但是还没有启动(not yet started)。

RUNNABLE: 正在Java虚拟机下跑任务的线程的状态。在RUNNABLE状态下的线程可能会处于等待状态, 因为它正在等待一些系统资源的释放,比如IO

BLOCKED: 阻塞状态,等待锁的释放,比如线程A进入了一个synchronized方法,线程B也想进入这个方法,但是这个方法的锁已经被线程A获取了,这个时候线程B就处于BLOCKED状态

WAITING: 等待状态,处于等待状态的线程是由于执行了3个方法中的任意方法。 1. Object的wait方法,并且没有使用timeout参数; 2. Thread的join方法,没有使用timeout参数 3. LockSupport的park方法。 处于waiting状态的线程会等待另外一个线程处理特殊的行为。 再举个例子,如果一个线程调用了一个对象的wait方法,那么这个线程就会处于waiting状态直到另外一个线程调用这个对象的notify或者notifyAll方法后才会解除这个状态

TIMED_WAITING: 有等待时间的等待状态,比如调用了以下几个方法中的任意方法,并且指定了等待时间,线程就会处于这个状态。 1. Thread.sleep方法 2. Object的wait方法,带有时间 3. Thread.join方法,带有时间 4. LockSupport的parkNanos方法,带有时间 5. LockSupport的parkUntil方法,带有时间

TERMINATED: 线程中止的状态,这个线程已经完整地执行了它的任务

javapark中断的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、javapark中断的信息别忘了在本站进行查找喔。

The End

发布于:2022-12-01,除非注明,否则均为首码项目网原创文章,转载请注明出处。