hanoijava的简单介绍
本篇文章给大家谈谈hanoijava,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、用java编写hanoi塔的非递归算法。
- 2、java中汉诺塔的算法问题
- 3、java中递归的作用是什么?为什么要用到递归?
- 4、java的递归排序法!
- 5、汉诺塔问题?
- 6、JAVA程序归递算法求解汉诺塔问题
用java编写hanoi塔的非递归算法。
这是个好问题,很少看到有人写汉诺塔的非递归...其实只要先写出递归,然后把递归的每一步要做的事情记录在一个栈里面就可以了
public class Test {
private static void emitStep(int source, int dest) {
System.out.println(source + " - " + dest);
}
static class Step {
Step(int n, int s, int d, int t) {
this.n = n;
source = s;
dest = d;
temp = t;
}
int n, source, dest, temp;
}
private static void hanoi(int n, int source, int dest, int temp) {
java.util.StackStep steps = new java.util.StackStep();
steps.add(new Step(n, source, dest, temp));
while (steps.empty() == false) {
Step step = steps.pop();
if (step.n == 1) {
emitStep(step.source, step.dest);
continue;
}
steps.push(new Step(step.n - 1, step.temp, step.dest, step.source));
steps.push(new Step(1, step.source, step.dest, 0));
steps.push(new Step(step.n - 1, step.source, step.temp, step.dest));
}
}
public static void main(String[] args) {
hanoi(3, 1, 3, 2);
}
}
java中汉诺塔的算法问题
class HanRuoTa {
static long s=0;
public static void main(String args[]) {
int n =3;
System.out.println("汉诺塔层数为" + n);
System.out.println("移动方案为:" );
hanoi(n, 'a', 'b', 'c');
System.out.println("需要移动次数:"+s);
}
static void hanoi(int n, char a, char b, char c) {
if (n 0) {
hanoi(n - 1, a, c, b);
move(a, b);
hanoi(n - 1, c, b, a);
s++;
}
}
static void move(char x, char y) {
System.out.println(x + "-" + y + "\t");
}
}
运行结果:
汉诺塔层数为3
移动方案为:
a-b
a-c
b-c
a-b
c-a
c-b
a-b
需要移动次数:7
java中递归的作用是什么?为什么要用到递归?
你的两个问题其实是一个问题,对吧。
递归的作用:递归算法可以解决一些通过递归定义的题目。
首先需要明白什么是递归定义的题目,通俗一点来说就是一个大问题中蕴含着小问题,而小问题同时又与大问题的结构相同,只是规模更小。
比如n阶乘的定义可以理解为:
n!= n*(n-1)!
从上面不难看出 (n-1)! 就是比n! 规模更小的问题,按照此方法不断分解下去,就能得到最初的一些基本的已知的数据。然后反过来就可以求出最终的结果了。
n的阶乘算法如下:
private static int jieCheng(int n) {
if(n == 1)
return 1;
else {
return n*jieCheng(n-1);
}
}
还有就是数据结构中二叉树的定义,也是递归定义的。因此二叉树的好多操作都是通过递归实现的。
用递归会使程序相当简洁。
java的递归排序法!
package Test;
import java.util.Scanner;
//汉诺问题
public class Hanoi {
public static void main(String[] args) {
int m;
Scanner sc=new Scanner(System.in);
System.out.println("input hte number of diskes:");
m=sc.nextInt();
System.out.println("The step to moving "+m+" diskes");
hanoi(m,'A','B','C');
}
public static void hanoi(int n,char one,char two,char three){
if(n==1){
move(one,three);
}else{
hanoi(n-1,one,three,two);
move(one,three);
hanoi(n-1,two,one,three);
}
}
public static void move(char x,char y){
System.out.println(x+"-----"+y);
}
}
汉诺塔问题?
汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。解答结果请自己运行计算,程序见尾部。面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。
后来,这个传说就演变为汉诺塔游戏:
1.有三根杆子A,B,C。A杆上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上
经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片:
如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C
此外,汉诺塔问题也是程序设计中的经典递归问题。
算法思路:
1.如果只有一个金片,则把该金片从源移动到目标棒,结束。
2.如果有n个金片,则把前n-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前n-1个移动到目标棒
(非专业人士可以忽略以下内容)
补充:汉诺塔的算法实现(c++)
#include
#include
using namespace std;
ofstream fout("out.txt");
void Move(int n,char x,char y)
{
fout"把"n"号从"x"挪动到"yendl;
}
void Hannoi(int n,char a,char b,char c)
{
if(n==1)
Move(1,a,c);
else
{
Hannoi(n-1,a,c,b);
Move(n,a,c);
Hannoi(n-1,b,a,c);
}
}
int main()
{
fout"以下是7层汉诺塔的解法:"endl;
Hannoi(7,'a','b','c');
fout.close();
cout"输出完毕!"endl;
return 0;
}
C语言精简算法
/* Copyrighter by SS7E */
#include /* Copyrighter by SS7E */
void hanoi(int n,char A,char B,char C) /* Copyrighter by SS7E */
{
if(n==1)
{
printf("Move disk %d from %c to %c\n",n,A,C);
}
else
{
hanoi(n-1,A,C,B); /* Copyrighter by SS7E */
printf("Move disk %d from %c to %c\n",n,A,C);
hanoi(n-1,B,A,C); /* Copyrighter by SS7E */
}
}
main() /* Copyrighter by SS7E */
{
int n;
printf("请输入数字n以解决n阶汉诺塔问题:\n");
scanf("%d",n);
hanoi(n,'A','B','C');
}/* Copyrighter by SS7E */
PHP算法:
?php
function hanoi($n,$x,$y,$z){
if($n==1){
move($x,1,$z);
}else{
hanoi($n-1,$x,$z,$y);
move($x,$n,$z);
hanoi($n-1,$y,$x,$z);
}
}
function move($x,$n,$z){
echo 'move disk '.$n.' from '.$x.' to '.$z.'
';
}
hanoi(10,'x','y','z');
?
JAVA算法:
public class Haniojava
{
public static void main(String args[])
{
byte n=2;
char a='A',b='B',c='C';
hanio(n,a,b,c);
}
public static void hanio(byte n,char a,char b,char c)
{
if(n==1)
System.out.println("move "+a+" to "+b);
else
{
hanio((byte)(n-1),a,c,b);
System.out.println("move "+a+" to "+b);
hanio((byte)(n-1),c,b,a);
}
}
}
#include
void move(char ch1, char ch2) {
coutch1"ch2' ';
}
void hanoi(int n, char a, char b, char c) {
if (n==1)
move (a,c);
else {
hanoi (n-1,a,c,b);
move (a,c);
hanoi (n-1,b,a,c);
}
}
void main() {
int m;
cout"Enter the number of disk to move:\n";
cinm;
cout"The step to moving "m" disk:\n";
hanoi (m,'A','B','C');
cinm;
}
用不了这么复杂
,设A上有n个盘子。
如果n=1,则将圆盘从A直接移动到C。
如果n=2,则:
1.将A上的n-1(等于1)个圆盘移到B上;
2.再将A上的一个圆盘移到C上;
3.最后将B上的n-1(等于1)个圆盘移到C上。
如果n=3,则:
A. 将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下:
(1)将A上的n`-1(等于1)个圆盘移到C上。
(2)将A上的一个圆盘移到B。
(3)将C上的n`-1(等于1)个圆盘移到B。
B. 将A上的一个圆盘移到C。
C. 将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下:
(1)将B上的n`-1(等于1)个圆盘移到A。
(2)将B上的一个盘子移到C。
(3)将A上的n`-1(等于1)个圆盘移到C。
到此,完成了三个圆盘的移动过程。
从上面分析可以看出,当n大于等于2时,移动的过程可分解为三个步骤:
第一步 把A上的n-1个圆盘移到B上;
第二步 把A上的一个圆盘移到C上;
第三步 把B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。
当n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。 显然这是一个递归过程,据此算法可编程如下:
move(int n,int x,int y,int z)
{
if(n==1)
printf("%c--%c\n",x,z);
else
{
move(n-1,x,z,y);
printf("%c--%c\n",x,z);
move(n-1,y,x,z);
}
}
main()
{
int h;
printf("\ninput number:\n");
scanf("%d",h);
printf("the step to moving %2d diskes:\n",h);
move(h,'a','b','c');
}
JAVA程序归递算法求解汉诺塔问题
首先你需要有下面这两个意识:
1.一个函数对于其它函数来说相当于一个盒子,他封装了其中的内容,其它函数只知道给它参数,然后得到它的结果。就好比一个做蛋糕的商店:我们只需要知道给钱,它就会给蛋糕。而我们不需要理解他们是怎么做出来的这个蛋糕。
2.调用的过程,就相当于上面例子中我们去买蛋糕的过程。谁说自己不能买自己店里的蛋糕呢?比如你是做蛋糕的,难道你不能买自己店里的蛋糕吗?函数的自我调用(递归?)也是这么回事情。
对于hanoi类里面,两个核心函数:
move(char getme, char purone):
这个函数的功能是:把getme最上面的盘子移动到purone位置,比如
move('A','B')就是把A柱子最上面那个盘子移动到B柱子的最上面。
hanoi(int n,char one,char two,char three):
这个函数的功能是:现在在柱子one上一共有n个盘子,这个函数能够通过two把它移动到three上面。
现在你了解了这两个函数设计的初衷,ok,我们来分别实现每个函数。
public void move(char getme,char purone)
{//请联系上面写的这个函数的功能来看:
c=c+1;//我们每移动一步,就计数一次
System.out.println(getme+"--"+putone+"搬盘次数为:"+c);
//这行使用输出来表明移动过了(事实上hanoi就是要让你详细说明移动过程,所谓“说明”,就是打印出每次的移动,那这里我们就把这次移动打印出来,这个没有任何问题吧?这个函数就是要把移动这件事情说出来,明白?
}
public void hanoi(int n,char one,char two,char three)
{//请回忆hanoi函数的功能,是要把one柱子上的前n个放到three柱子上:
if(n==1) //如果n==1,那也就是要把one柱子上最上面的那个移到three上面了,这就是move函数的作用,对吧?那就直接调用move(one,three)
move(one,three);
else{
//如果n1的话,那我们该怎么办?
分为三个步骤:
1.先想办法把one主子上的前n-1个移动到柱子two上
2.然后把one柱子上的第n个移动到柱子three上。
3.然后想办法把two柱子上的n-1个移动到three上。
对吧?现在你注意到第1步和第3步是不是就是hanoi这个函数的功能能够实现的呢?回答显然是肯定的,下面就是这三步。
hanoi(n-1,one,three,two); //把one柱子上的n-1个通过three移动到two上。
move(one,three); //把one主子上最上面那个(注意,上面一步已经把前n-1个移动到two上面了,one柱现在最上的那个就是第N个)
hanoi(n-1,two,one,three);//把two柱子上的n-1个移动到three柱子上。
}
}
解释到这里,main函数里面的调用应该也就很明白了吧?
a.hanoi(m,'A','B','C');
把'A'柱子上的m个盘子通过'B'柱子全部移动到'C'上面的步骤。
解释起来很容易,想得多了也就慢慢明白了,最难的是如何设计一个递归出来。这个和数学里面的递推公式很相似(事实上其来源就是递推公式),想必你肯定知道递增函数把? An = An-1 + 5(A0 = 0 );这个条件能够唯一确定一个数列。
那现在你把它写成函数呢?
int A(int n) {
if(n == 0) {
return 0;
} else {
return A(n -1) + 5;
}
}
调用A(n)就能返回An的值。明白?
多想想,多练练,大家都是这么过来的:)祝好运
关于hanoijava和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
发布于:2022-12-01,除非注明,否则均为
原创文章,转载请注明出处。