包含java8的内存分区的词条

博主:adminadmin 2022-11-28 23:34:10 58

本篇文章给大家谈谈java8的内存分区,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

哪位能描述一下 java 中内存的分区情况和各类变量在内存中的存贮情况。

Java内存分配与管理是Java的核心技术之一,一般Java在内存分配时会涉及到以下区域:

◆寄存器:我们在程序中无法控制

◆栈:存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中

◆堆:存放用new产生的数据

◆静态域:存放在对象中用static定义的静态成员

◆常量池:存放常量

◆非RAM存储:硬盘等永久存储空间

Java内存分配中的栈

在函数中定义的一些基本类型的变量数据和对象的引用变量都在函数的栈内存中分配。

当在一段代码块定义一个变量时,Java就在栈中 为这个变量分配内存空间,当该变量退出该作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。

Java内存分配中的堆

堆内存用来存放由new创建的对象和数组。 在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。

在堆中产生了一个数组或对象后,还可以 在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。  引用变量就相当于是 为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。引用变量就相当于是为数组或者对象起的一个名称。

引用变量是普通的变量,定义时在栈中分配,引用变量在程序运行到其作用域之外后被释放。而数组和对象本身在堆中分配,即使程序 运行到使用 new 产生数组或者对象的语句所在的代码块之外,数组和对象本身占据的内存不会被释放,数组和对象在没有引用变量指向它的时候,才变为垃圾,不能在被使用,但仍 然占据内存空间不放,在随后的一个不确定的时间被垃圾回收器收走(释放掉)。这也是 Java 比较占内存的原因。

实际上,栈中的变量指向堆内存中的变量,这就是Java中的指针!

常量池 (constant pool)

常量池指的是在编译期被确定,并被保存在已编译的.class文件中的一些数据。除了包含代码中所定义的各种基本类型(如int、long等等)和对象型(如String及数组)的常量值(final)还包含一些以文本形式出现的符号引用,比如:

◆类和接口的全限定名;

◆字段的名称和描述符;

◆方法和名称和描述符。

虚拟机必须为每个被装载的类型维护一个常量池。常量池就是该类型所用到常量的一个有序集和,包括直接常量(string,integer和 floating point常量)和对其他类型,字段和方法的符号引用。

对于String常量,它的值是在常量池中的。而JVM中的常量池在内存当中是以表的形式存在的, 对于String类型,有一张固定长度的CONSTANT_String_info表用来存储文字字符串值,注意:该表只存储文字字符串值,不存储符号引 用。说到这里,对常量池中的字符串值的存储位置应该有一个比较明了的理解了。

在程序执行的时候,常量池 会储存在Method Area,而不是堆中。

堆与栈

Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、 anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存 大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态 分配内存,存取速度较慢。

栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是 确定的,缺乏灵活性。栈中主要存放一些基本类型的变量数据(int, short, long, byte, float, double, boolean, char)和对象句柄(引用)。

栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:

1. int a = 3;

2. int b = 3;

编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理int b = 3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。

这时,如果再令 a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响 到b的值。

要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b, 它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。

String是一个特殊的包装类数据。可以用:

String str = new String("abc");

String str = "abc";

两种的形式来创建,第一种是用new()来新建对象的,它会在存放于堆中。每调用一次就会创建一个新的对象。而第二种是先在栈中创建一个对String类的对象引用变量str,然后通过符号引用去字符串常量池 里找有没有"abc",如果没有,则将"abc"存放进字符串常量池 ,并令str指向”abc”,如果已经有”abc” 则直接令str指向“abc”。

比较类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==,下面用例子说明上面的理论。

1.String str1 = "abc";

2.String str2 = "abc";

3.System.out.println(str1==str2); //true

可以看出str1和str2是指向同一个对象的。

1.String str1 =new String ("abc");

2.String str2 =new String ("abc");

3.System.out.println(str1==str2); // false

用new的方式是生成不同的对象。每一次生成一个。

因此用第二种方式创建多个”abc”字符串,在内存中 其实只存在一个对象而已. 这种写法有利与节省内存空间. 同时它可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于String str = new String("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。

另 一方面, 要注意: 我们在使用诸如String str = "abc";的格式定义类时,总是想当然地认为,创建了String类的对象str。担心陷阱!对象可能并没有被创建!而可能只是指向一个先前已经创建的 对象。只有通过new()方法才能保证每次都创建一个新的对象。

由于String类的immutable性质,当String变量需要经常变换 其值时,应该考虑使用StringBuffer类,以提高程序效率。

1. 首先String不属于8种基本数据类型,String是一个对象。因为对象的默认值是null,所以String的默认值也是null;但它又是一种特殊的对象,有其它对象没有的一些特性。

2. new String()和new String(”")都是申明一个新的空字符串,是空串不是null;

3. String str=”kvill”;String str=new String (”kvill”)的区别

示例:

1.String s0="kvill";

2.String s1="kvill";

3.String s2="kv" + "ill";

4.System.out.println( s0==s1 );

5.System.out.println( s0==s2 );

结果为:

true

true

首先,我们要知结果为道Java 会确保一个字符串常量只有一个拷贝。

因为例子中的 s0和s1中的”kvill”都是字符串常量,它们在编译期就被确定了,所以s0==s1为true;而”kv”和”ill”也都是字符串常量,当一个字 符串由多个字符串常量连接而成时,它自己肯定也是字符串常量,所以s2也同样在编译期就被解析为一个字符串常量,所以s2也是常量池中” kvill”的一个引用。所以我们得出s0==s1==s2;用new String() 创建的字符串不是常量,不能在编译期就确定,所以new String() 创建的字符串不放入常量池中,它们有自己的地址空间。

示例:

6.String s0="kvill";

7.String s1=new String("kvill");

8.String s2="kv" + new String("ill");

9.System.out.println( s0==s1 );

10.System.out.println( s0==s2 );

11.System.out.println( s1==s2 );

结果为:

false

false

false

例2中s0还是常量池 中"kvill”的应用,s1因为无法在编译期确定,所以是运行时创建的新对象”kvill”的引用,s2因为有后半部分 new String(”ill”)所以也无法在编译期确定,所以也是一个新创建对象”kvill”的应用;明白了这些也就知道为何得出此结果了。

4. String.intern():

再补充介绍一点:存在于.class文件中的常量池,在运行期被JVM装载,并且可以扩充。String的 intern()方法就是扩充常量池的 一个方法;当一个String实例str调用intern()方法时,Java 查找常量池中 是否有相同Unicode的字符串常量,如果有,则返回其的引用,如果没有,则在常 量池中增加一个Unicode等于str的字符串并返回它的引用;看示例就清楚了

示例:

1.String s0= "kvill";

2.String s1=new String("kvill");

3.String s2=new String("kvill");

4.System.out.println( s0==s1 );

5.System.out.println( "**********" );

6.s1.intern();

7.s2=s2.intern(); //把常量池中"kvill"的引用赋给s2

8.System.out.println( s0==s1);

9.System.out.println( s0==s1.intern() );

10.System.out.println( s0==s2 );

结果为:

false

false //虽然执行了s1.intern(),但它的返回值没有赋给s1

true //说明s1.intern()返回的是常量池中"kvill"的引用

true

最后我再破除一个错误的理解:有人说,“使用 String.intern() 方法则可以将一个 String 类的保存到一个全局 String 表中 ,如果具有相同值的 Unicode 字符串已经在这个表中,那么该方法返回表中已有字符串的地址,如果在表中没有相同值的字符串,则将自己的地址注册到表中”如果我把他说的这个全局的 String 表理解为常量池的话,他的最后一句话,”如果在表中没有相同值的字符串,则将自己的地址注册到表中”是错的:

示例:

1.String s1=new String("kvill");

2.String s2=s1.intern();

3.System.out.println( s1==s1.intern() );

4.System.out.println( s1+" "+s2 );

5.System.out.println( s2==s1.intern() );

结果:

1. false

2. kvill kvill

3. true

在这个类中我们没有声名一个”kvill”常量,所以常量池中一开始是没有”kvill”的,当我们调用s1.intern()后就在常量池中新添加了一 个”kvill”常量,原来的不在常量池中的”kvill”仍然存在,也就不是“将自己的地址注册到常量池中”了。

s1==s1.intern() 为false说明原来的”kvill”仍然存在;s2现在为常量池中”kvill”的地址,所以有s2==s1.intern()为true。

5. 关于equals()和==:

这个对于String简单来说就是比较两字符串的Unicode序列是否相当,如果相等返回true;而==是 比较两字符串的地址是否相同,也就是是否是同一个字符串的引用。

6. 关于String是不可变的

这一说又要说很多,大家只 要知道String的实例一旦生成就不会再改变了,比如说:String str=”kv”+”ill”+” “+”ans”; 就是有4个字符串常量,首先”kv”和”ill”生成了”kvill”存在内存中,然后”kvill”又和” ” 生成 “kvill “存在内存中,最后又和生成了”kvill ans”;并把这个字符串的地址赋给了str,就是因为String的”不可变”产生了很多临时变量,这也就是为什么建议用StringBuffer的原 因了,因为StringBuffer是可改变的。

下面是一些String相关的常见问题:

String中的final用法和理解

final StringBuffer a = new StringBuffer("111");

final StringBuffer b = new StringBuffer("222");

a=b;//此句编译不通过

final StringBuffer a = new StringBuffer("111");

a.append("222");// 编译通过

可见,final只对引用的"值"(即内存地址)有效,它迫使引用只能指向初始指向的那个对象,改变它的指向会导致编译期错误。至于它所指向的对象 的变化,final是不负责的。

String常量池问题的几个例子

下面是几个常见例子的比较分析和理解:

String a = "a1";

String b = "a" + 1;

System.out.println((a == b)); //result = true

String a = "atrue";

String b = "a" + "true";

System.out.println((a == b)); //result = true

String a = "a3.4";

String b = "a" + 3.4;

System.out.println((a == b)); //result = true

分析:JVM对于字符串常量的"+"号连接,将程序编译期,JVM就将常量字符串的"+"连接优化为连接后的值,拿"a" + 1来说,经编译器优化后在class中就已经是a1。在编译期其字符串常量的值就确定下来,故上面程序最终的结果都为true。

String a = "ab";

String bb = "b";

String b = "a" + bb;

System.out.println((a == b)); //result = false

分析:JVM对于字符串引用,由于在字符串的"+"连接中,有字符串引用存在,而引用的值在程序编译期是无法确定的,即"a" + bb无法被编译器优化,只有在程序运行期来动态分配并将连接后的新地址赋给b。所以上面程序的结果也就为false。

String a = "ab";

final String bb = "b";

String b = "a" + bb;

System.out.println((a == b)); //result = true

分析:和[3]中唯一不同的是bb字符串加了final修饰,对于final修饰的变量,它在编译时被解析为常量值的一个本地拷贝存储到自己的常量 池中或嵌入到它的字节码流中。所以此时的"a" + bb和"a" + "b"效果是一样的。故上面程序的结果为true。

String a = "ab";

final String bb = getBB();

String b = "a" + bb;

System.out.println((a == b)); //result = false

private static String getBB() {

return "b";

}

分析:JVM对于字符串引用bb,它的值在编译期无法确定,只有在程序运行期调用方法后,将方法的返回值和"a"来动态连接并分配地址为b,故上面 程序的结果为false。

通过上面4个例子可以得出得知:

String  s  =  "a" + "b" + "c";

就等价于String s = "abc";

String  a  =  "a";

String  b  =  "b";

String  c  =  "c";

String  s  =   a  +  b  +  c;

这个就不一样了,最终结果等于:

1.StringBuffer temp = new StringBuffer();

2.temp.append(a).append(b).append(c);

3.String s = temp.toString();

由上面的分析结果,可就不难推断出String 采用连接运算符(+)效率低下原因分析,形如这样的代码:

public class Test {

public static void main(String args[]) {

String s = null;

for(int i = 0; i  100; i++) {

s += "a";

}

}

}

每做一次 + 就产生个StringBuilder对象,然后append后就扔掉。下次循环再到达时重新产生个StringBuilder对象,然后 append 字符串,如此循环直至结束。如果我们直接采用 StringBuilder 对象进行 append 的话,我们可以节省 N - 1 次创建和销毁对象的时间。所以对于在循环中要进行字符串连接的应用,一般都是用StringBuffer或StringBulider对象来进行 append操作。

String对象的intern方法理解和分析:

1.public class Test4 {

2.    private static String a = "ab";

3.    public static void main(String[] args){

4.        String s1 = "a";

5.        String s2 = "b";

6.        String s = s1 + s2;

7.        System.out.println(s == a);//false

8.        System.out.println(s.intern() == a);//true

9.    }

10.}

这里用到Java里面是一个常量池的问题。对于s1+s2操作,其实是在堆里面重新创建了一个新的对象,s保存的是这个新对象在堆空间的的内容,所 以s与a的值是不相等的。而当调用s.intern()方法,却可以返回s在常量池中的地址值,因为a的值存储在常量池中,故s.intern和a的值相等。

总结

栈中用来存放一些原始数据类型的局部变量数据和对象的引用(String,数组.对象等等)但不存放对象内容

堆中存放使用new关键字创建的对象.

字符串是一个特殊包装类,其引用是存放在栈里的,而对象内容必须根据创建方式不同定(常量池和堆).有的是编译期就已经创建好,存放在字符串常 量池中,而有的是运行时才被创建.使用new关键字,存放在堆中。

Java内存划分到底是4个部分还是5个部分?

Java把内存划分成两种:一种是栈内存,一种是堆内存。在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。堆内存用来存放由new创建的对象和数组。在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中这个变量的取值等于数组或对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。具体的说:栈与堆都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。Java的堆是一个运行时数据区,类的(对象从中分配空间。这些对象通过new、newarray、anewarray和multianewarray等指令建立,它们不需要程序代码来显式的释放。堆是由垃圾回收来负责的,堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,因为它是在运行时动态分配内存的,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。栈的优势是,存取速度比堆要快,仅次于寄存器,栈数据可以共享。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。栈中主要存放一些基本类型的变量(,int,short,long,byte,float,double,boolean,char)和对象句柄。栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:inta=3;intb=3;编译器先处理inta=3;首先它会在栈中创建一个变量为a的引用,然后查找栈中是否有3这个值,如果没找到,就将3存放进来,然后将a指向3。接着处理intb=3;在创建完b的引用变量后,因为在栈中已经有3这个值,便将b直接指向3。这样,就出现了a与b同时均指向3的情况。这时,如果再令a=4;那么编译器会重新搜索栈中是否有4值,如果没有,则将4存放进来,并令a指向4;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。要注意这种数据的共享与两个对象的引用同时指向一个对象的这种共享是不同的,因为这种情况a的修改并不会影响到b,它是由编译器完成的,它有利于节省空间。而一个对象引用变量修改了这个对象的内部状态,会影响到另一个对象引用变量。

如何删除c盘无用文件

删除c盘无用文件有以下几种方法:

第一种方法:用软件清理。打开360安全卫士,选择“电脑清理”选项,就可以对以下所有子选项进行一个一个清理,(目前只能一个一个清理)。点击开始扫描后,之后软件会开始运行,之后会有清理报告,还需要用户按立即清理的哦。如果您觉得还是不满意,您都可以选择搬迁系统盘,打开360安全卫士,然后点右手边的,更多进入功能区,如果您没添加C盘搬家功能,可以在下方选择,一点就能添加到上方,然后点击搬家即可,按着系统说的要求操作可以了。

第二种方法:用附件里的磁盘程序清理。点开始》所有程序》附件》系统工具》磁盘碎片整理程序,打开一个新的对话框,然后选择想要清理的磁盘,点“碎片整理”即可。清理成功后,在会话状态下会显示“磁盘清理成功”。

第三种方法:我的电脑-属性清理。双击“我的电脑”,选择C盘,右键“属性”,打开“属性”对话框,选择“磁盘清理”按钮,然后打开一个对话框,然后想要清理的文件类型后,点确定,即可。

这个配置,硬盘的虚拟内存怎么设置?我要玩我的世界服务器(加光影),这个游戏特别吃内存

计算机(我的电脑)-高级系统设置-性能下那个设置按钮-高级-虚拟内存下的更改-选择一个分区(最好不要用c盘,除非ssd),点系统托管大小或者自己定义大小,全部确定然后重启生效

英语Max Non Heap Memory怎么翻译?

为什么要学习JVM?

深入理解JVM可以帮助我们从平台角度提高解决问题的能力,例如,有效防止内存泄漏(Memory leak),优化线程锁的使用 (Thread Lock),更加高效的进行垃圾回收 (Garbage collection),提高系统吞吐量 (throughput),降低延迟(Delay),提高其性能(performance)等。

你是如何理解JVM的?

JVM 是 Java Virtual Machine的缩写,顾名思义,它是一个虚拟计算机,是硬件计算机的抽象(虚构)实现,是JAVA平台的一部分,如图所示(见图中的最底端):

JVM是 Java 程序能够实现跨平台的基础(Java的跨平台本质上是通过不同平台的JVM实现的),它的作用是加载 Java 程序,把字节码(bytecode)翻译成机器码再交由 CPU 执行。如图所示:

程序在执行之前先要把 Java 代码(.java)转换成字节码(.class),JVM 通过类加载器(ClassLoader)把字节码加载到内存中,【关注尚硅谷,轻松学IT】但字节码文件是 JVM 的一套指令集规范,并不能直接交给底层操作系统去执行,因此需要特定的命令解析器执行引擎(Execution Engine) 将字节码翻译成底层机器码,再交由 CPU 去执行。

市场上有哪些主流的JVM呢?

JVM是一种规范,基于这种规范,不同公司做了具体实现,BEA公司研发JRockit VM ,后在2008年由Oracle公司收购;IBM公司研发了J9 VM ,只应用于IBM 内部。Sun公司研发了HotSpot VM ,后在2010年由Oracle公司收购。目前是甲骨文公司最主流的一款JVM虚拟机,也是我们现在最常用的一种。

JVM的体系结构是怎样的?

JVM 的体系结构,如图所示:

类加载系统 (ClassLoader System)负责加载类到内存;运行时数据区 (Runtime Data Area)负责存储对象数据信息;执行引擎(Execution Engine)负责调用对象执行业务;本地库接口(Native Interface)负责融合不同的编程语言为 Java 所用。

JVM有哪些运行模式吗?

JVM有两种运行模式Server与Client。两种模式的区别在于,Client模式启动速度较快,Server模式启动较慢;但是启动进入稳定期之后Server模式的程序运行速度比Client要快很多。这是因为Server模式启动的JVM采用的是重量级的虚拟机,对程序采用了更多的优化;而Client模式启动的JVM采用的是轻量级的虚拟机。所以Server启动慢,但稳定后速度比Client远远要快。

现在64位的jdk中默认都是server模式(可通过 java -version进行查看)。当虚拟机运行在-client模式的时候,使用的是一个代号为C1的轻量级编译器, 而server模式启动的虚拟机采用相对重量级,代号为C2的编译器.c1、c2都是JIT编译器, C2比C1编译器编译的相对彻底,服务起来之后,性能更高。

JVM 运行时内存结构是怎样的?

不同虚拟机实现可能略微有所不同,但都会遵从 Java 虚拟机规范,Java 8 虚

拟机规范规定,Java 虚拟机所管理的内存将会包括以下几个区域,如图所示:

Java 堆(Heap)

Java堆(Java Heap)是 JVM 中内存最大的一块,被所有线程共享的,在虚拟机启动时创建,主要用于存放对象实例,大部分对象实例也都是在这里分配。随着JIT编译器的发展和逃逸分析技术的逐渐成熟,栈上分配、标量替换优化的技术将会导致一些微妙的变化,所有的对象都分配在堆上渐渐变得不那么绝对了。小对象未逃逸还可以在直接在栈上分配。如果在堆中没有内存完成实例分配,并且堆已不可以再进行扩展时,系统底层运行时将会抛出 OutOfMemoryError。Java 虚拟机规范规定,Java 堆可以处在物理上不连续的内存空间中,只要逻辑上连续即可,就像我们的磁盘空间一样。在实现上也可以是固定大小的,也可以是可扩展的,不过当前主流的虚拟机都是可扩展的,通过 -Xmx 和 -Xms 参数定义堆内存大小。

方法区(Method Area)

方法区(Methed Area)是一种规范,用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译后的代码等数据。不同jdk,方法区的实现不同,HotSpot 虚拟机在 JDK 8 中使用 Native Memory 来实现方法区。当方法无法满足内存分配需求时会抛出 OutOfMemoryError 异常。

Java 虚拟机栈(VM Stack)

Java 虚拟机栈(Java Virtual Machine Stacks)描述的是 Java 方法执行时的内存模型,每个方法在被线程调用时都会创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态链接、方法出口等信息,每个方法从调用直至执行完成的过程,【关注尚硅谷,轻松学IT】都对应着一个栈帧在虚拟机栈中入栈到出栈的过程。如果线程请求的栈深度大于虚拟机所允许的栈深度就会抛出 StackOverflowError 异常。如果虚拟机是可以动态扩展的,如果扩展时无法申请到足够的内存就会抛出 OutOfMemoryError 异常。

JVM本地方法栈 (Native Method Stack)

本地方法栈(Native Method Stack)与虚拟机栈的作用类似,只不过虚拟机栈是服务 Java 方法的,而本地方法栈是为虚拟机调用 Native 方法服务的。在 Java 虚拟机规范中对于本地方法栈没有特殊的要求,虚拟机可以自由的实现它,因此在 Sun HotSpot 虚拟机直接把本地方法栈和虚拟机栈合二为一了。

JVM程序计数器(Program Counter Register)

程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程执行的字节码的行号指示器。在虚拟机的概念模型里,字节码解析器的工作是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。

由于 JVM 的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,也就是任何时刻,一个处理器(或者说一个内核)都只会执行一条线程中的指令。因此为了线程切换后能恢复到正确的执行位置,每个线程都有独立的程序计数器。

如果线程正在执行 Java 中的方法,程序计数器记录的就是正在执行虚拟机字节码指令的地址,如果是 Native 方法,这个计数器就为空(undefined),因此该内存区域是唯一一个在 Java 虚拟机规范中没有规定 OutOfMemoryError 的区域。

如何理解JVM中的GC系统?

追踪仍然使用的所有对象,并将其余对象标记为垃圾,然后进行回收,这个过程称之为GC(垃圾回收).所有的GC系统可从GC判断策略(例如引用计数,对象可达性分析),GC收集算法(标记-清除,标记-清除-整理,标记-复制-清除,分代),GC收集器(例如Serial,Parallel,CMS,G1)等方面进行学习

JVM引用链中可以作为 Root 的对象?

Java 虚拟机栈中的引用对象;

本地方法栈中 JNI(既一般说的 Native 方法)引用的对象;

方法区中类静态常量的引用对象;

方法区中常量的引用对象。

JVM中常见垃圾回收算法有哪些?

引用计数器算法

这个算法是给每一个对象设置一个引用计数器,每当有一个地方引用这个对象的时候,计数器就加 1,与之相反,每当引用失效的时候就减 1。也就是以计数来判断对象是否为垃圾。例如:

引用计数法,有一个很大的缺陷就是循环引用,例如:

可达性分析算法

这个算法的核心思路就是通过一系列的“GC Roots”对象作为起始点,从这些对象开始往下搜索,搜索所经过的路径称之为“引用链”。当一个对象到 GC Roots 没有任何引用链相连的时候,证明此对象是可以被回收的。例如:

复制算法

这个算法是将内存分为大小相同的两块,当这一块使用完了,就把当前存活的对象复制到另一块,然后一次性清空当前区块。此算法的缺点是只能利用一半的内存空间。例如:

标记-清除算法

这个算法执行分两阶段,第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。此算法需要暂停整个应用,同时,会产生内存碎片。例如:

标记-整理算法

这个算法结合了“标记-清除”和“复制”两个算法的优点。第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,把存活对象“压缩”复制到堆的其中一块空间中,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题,例如:

JVM对象引用都有哪些类型?

不管是引用计数法还是可达性分析算法都与对象的“引用”有关[说说Java中的四大引用类型。],这说明对象的引用决定了对象的生死,对象的引用关系如下。

强引用

在代码中普遍存在的,类似 Object obj = new Object() 这类引用,只要强引用还在,垃圾收集器永远不会回收掉被引用的对象。

软引用

是一种相对强引用弱化一些的引用,可以让对象豁免一些垃圾收集,只有当JVM 认为内存不足时,才会去试图回收软引用指向的对象,JVM 会确保在抛出 OutOfMemoryError 之前,清理软引用指向的对象。

弱引用

非必需对象,但它的强度比软引用更弱,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。

虚引用

也称为幽灵引用或幻影引用,是最弱的一种引用关系,无法通过虚引用来获取一个对象实例,为对象设置虚引用的目的只有一个,就是当这个对象被收集器回收时收到一条系统通知。

JVM垃圾回收器的分类都有哪些?

新生代回收器

Serial、ParNew、Parallel Scavenge

老年代回收器

Serial Old、Parallel Old、CMS

整堆回收器

G1垃圾回收器

分代垃圾回收器的组成部分有哪些?

分代垃圾回收器是由新生代(Young Generation)和老生代(Tenured Generation)组成的,默认情况下新生代和老生代的内存比例是 1:2。

新生代的组成部分有哪些?:

新生代是由:Eden、Form Survivor、To Survivor 三个区域组成的,它们内存默认占比是 8:1:1,如图所示:

新生代垃圾回收是怎么执行的?

第一步将Eden和From Survivor 活着的对象复制到 To Survivor 区;第二步将清空 Eden 和 From Survivor 分区;第三步将From Survivor 和 To Survivor 分区交换(From 变 To,To 变 From)。当新生代的 Survivor 分区为 2 个的时候,不论是空间利用率还是程序运行的效率都是最优的。

谈谈JVM中的CMS 垃圾回收器?

CMS(Concurrent Mark and Sweep)是并发标记和清除垃圾收集器。它会使用空闲列表(free-lists)管理内存空间的回收,不对老年代进行整理。其优点是在标记、清除阶段的大部分工作和应用线程一起并发执行。可以降低延迟,缩短停顿时间,提高服务的响应时间。当然也有缺陷,主要表现在,对 CPU 资源要求敏感,无法清除浮动垃圾(浮动垃圾指的是 CMS 清除垃圾的时候,还有用户线程产生新的垃圾,这部分未被标记的垃圾叫做“浮动垃圾”,只能在下次 GC 的时候进行清除),还会产生大量空间碎片。

谈谈JVM中的是 G1 垃圾回收器?

G1(Garbage-First GC)是一款实时收集器,其设计目标是将STW停顿时间和分布变成可预期以及可配置的。可以说是一种兼顾吞吐量和停顿时间的 GC 实现。G1 可以直观的设定停顿时间的目标,相比于 CMS ,G1 未必能做到 CMS 在最好情况下的延时停顿,但是最差情况要好很多。

使用G1收集器时,Java堆的内存布局与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔阂了,它们都是一部分(可以不连续)Region的集合,例如:

这样的划分使得 GC不必每次都去收集整个堆空间, 而是以增量的方式来处理,每次只处理一部分小堆区,称为此次的回收集(collection set). 每次暂停都会收集所有年轻代的小堆区, 同时也可能只包含一部分老年代小堆区。

G1的另一项创新, 是在并发阶段估算每个小堆区存活对象的总数。用来构建回收集(collection set)的原则是: 垃圾最多的小堆区会被优先收集。这也是G1名称的由来:garbage-first。

G1 解决了 CMS 中的各种疑难问题, 包括暂停时间的可预测性, 并终结了堆内存的碎片化。对单业务延迟非常敏感的系统来说, 如果CPU资源不受限制,那么G1可以说是 HotSpot 中最好的选择, 特别是在最新版本的Java虚拟机中。当然,这种降低延迟的优化也不是没有代价的: 由于额外的写屏障(write barriers)和更积极的守护线程, G1的开销会更大。所以, 如果系统属于吞吐量优先型的,又或者CPU持续占用100%, 而又不在乎单次GC的暂停时间, 那么CMS是更好的选择。

JVM垃圾回收的调优参数有哪些?

-Xmx:512 设置最大堆内存为 512 M;

-Xms:256 初始堆内存(最小堆)为 256 M;

-XX:MaxNewSize 设置最大年轻代内存;

-XX:MaxTenuringThreshold=6 设置新生代对象经过6次GC晋升到老年代;

-XX:PretrnureSizeThreshold 设置大对象的值,超过这个值的大对象直接进入老生代;

-XX:NewRatio 设置分代垃圾回收器新生代和老生代内存占比;

-XX:SurvivorRatio 设置新生代 Eden、Form Survivor、To Survivor 占比。

JVM现代并发GC有什么调优原则

第一要空间换时间与效率,针对G1 ZGC 加大堆内存(更多的空余空间)的配置往往更有利 于GC达到目标暂停时间。第二要知道低暂停不代表高吞吐量,并发GC是保证并发阶段GC的同时业务线程依然有几率获得CPU时间片,但同时也意味着GC会与业务线程抢占计算资源,且往往更多的并发阶段为了处理更多的同步问题,也会占用更多的计算资源。第三是GC调优永远要考虑机器资源,对应系统应用场景等等,至少目前没有银弹。

文章来源于jason

关于java8的内存分区和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

The End

发布于:2022-11-28,除非注明,否则均为首码项目网原创文章,转载请注明出处。