「二叉树的遍历算法java」二叉树的遍历算法图解
今天给各位分享二叉树的遍历算法java的知识,其中也会对二叉树的遍历算法图解进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、java中的遍历是什么意思?
- 2、java Map 怎么遍历
- 3、java构建二叉树算法
- 4、用JAVA语言实现二叉树的层次遍历的非递归算法及查找算法。
- 5、java 二叉树前序遍历
- 6、java实现二叉树层次遍历
java中的遍历是什么意思?
遍历就是把每个元素都访问一次.比如一个二叉树,遍历二叉树意思就是把二叉树中的每个元素都访问一次
java Map 怎么遍历
java Map 遍历一般有四种方式
方式一: 这是最常见的并且在大多数情况下也是最可取的遍历方式。在键值都需要时使用。
方式二: 在for-each循环中遍历keys或values。
如果只需要map中的键或者值,你可以通过keySet或values来实现遍历,而不是用entrySet。
该方法比entrySet遍历在性能上稍好(快了10%),而且代码更加干净。
方式三:使用Iterator遍历
使用泛型:
不使用泛型:
你也可以在keySet和values上应用同样的方法。
方法四: 通过键找值遍历(效率低)
作为方法一的替代,这个代码看上去更加干净;但实际上它相当慢且无效率。
因为从键取值是耗时的操作(与方法一相比,在不同的Map实现中该方法慢了20%~200%)。如果安装了FindBugs,它会做出检查并警告你关于哪些是低效率的遍历。所以尽量避免使用。
总结:
如果仅需要键(keys)或值(values)使用方法二。
如果所使用的语言版本低于java 5,或是打算在遍历时删除entries,必须使用方法三。
否则使用方法一(键值都要)。
扩展资料:
类似的遍历算法:
二叉树的遍历算法
1、先(根)序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴ 访问根结点;
⑵ 遍历左子树;
⑶ 遍历右子树。
2、中(根)序遍历的递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴遍历左子树;
⑵访问根结点;
⑶遍历右子树。
3、后(根)序遍历得递归算法定义:
若二叉树非空,则依次执行如下操作:
⑴遍历左子树;
⑵遍历右子树;
⑶访问根结点。
参考资料:百度百科——Java
java构建二叉树算法
//******************************************************************************************************//
//*****本程序包括简单的二叉树类的实现和前序,中序,后序,层次遍历二叉树算法,*******//
//******以及确定二叉树的高度,制定对象在树中的所处层次以及将树中的左右***********//
//******孩子节点对换位置,返回叶子节点个数删除叶子节点,并输出所删除的叶子节点**//
//*******************************CopyRight By phoenix*******************************************//
//************************************Jan 12,2008*************************************************//
//****************************************************************************************************//
public class BinTree {
public final static int MAX=40;
private Object data; //数据元数
private BinTree left,right; //指向左,右孩子结点的链
BinTree []elements = new BinTree[MAX];//层次遍历时保存各个节点
int front;//层次遍历时队首
int rear;//层次遍历时队尾
public BinTree()
{
}
public BinTree(Object data)
{ //构造有值结点
this.data = data;
left = right = null;
}
public BinTree(Object data,BinTree left,BinTree right)
{ //构造有值结点
this.data = data;
this.left = left;
this.right = right;
}
public String toString()
{
return data.toString();
}//前序遍历二叉树
public static void preOrder(BinTree parent){
if(parent == null)
return;
System.out.print(parent.data+" ");
preOrder(parent.left);
preOrder(parent.right);
}//中序遍历二叉树
public void inOrder(BinTree parent){
if(parent == null)
return;
inOrder(parent.left);
System.out.print(parent.data+" ");
inOrder(parent.right);
}//后序遍历二叉树
public void postOrder(BinTree parent){
if(parent == null)
return;
postOrder(parent.left);
postOrder(parent.right);
System.out.print(parent.data+" ");
}// 层次遍历二叉树
public void LayerOrder(BinTree parent)
{
elements[0]=parent;
front=0;rear=1;
while(frontrear)
{
try
{
if(elements[front].data!=null)
{
System.out.print(elements[front].data + " ");
if(elements[front].left!=null)
elements[rear++]=elements[front].left;
if(elements[front].right!=null)
elements[rear++]=elements[front].right;
front++;
}
}catch(Exception e){break;}
}
}//返回树的叶节点个数
public int leaves()
{
if(this == null)
return 0;
if(left == nullright == null)
return 1;
return (left == null ? 0 : left.leaves())+(right == null ? 0 : right.leaves());
}//结果返回树的高度
public int height()
{
int heightOfTree;
if(this == null)
return -1;
int leftHeight = (left == null ? 0 : left.height());
int rightHeight = (right == null ? 0 : right.height());
heightOfTree = leftHeightrightHeight?rightHeight:leftHeight;
return 1 + heightOfTree;
}
//如果对象不在树中,结果返回-1;否则结果返回该对象在树中所处的层次,规定根节点为第一层
public int level(Object object)
{
int levelInTree;
if(this == null)
return -1;
if(object == data)
return 1;//规定根节点为第一层
int leftLevel = (left == null?-1:left.level(object));
int rightLevel = (right == null?-1:right.level(object));
if(leftLevel0rightLevel0)
return -1;
levelInTree = leftLevelrightLevel?rightLevel:leftLevel;
return 1+levelInTree;
}
//将树中的每个节点的孩子对换位置
public void reflect()
{
if(this == null)
return;
if(left != null)
left.reflect();
if(right != null)
right.reflect();
BinTree temp = left;
left = right;
right = temp;
}// 将树中的所有节点移走,并输出移走的节点
public void defoliate()
{
String innerNode = "";
if(this == null)
return;
//若本节点是叶节点,则将其移走
if(left==nullright == null)
{
System.out.print(this + " ");
data = null;
return;
}
//移走左子树若其存在
if(left!=null){
left.defoliate();
left = null;
}
//移走本节点,放在中间表示中跟移走...
innerNode += this + " ";
data = null;
//移走右子树若其存在
if(right!=null){
right.defoliate();
right = null;
}
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
BinTree e = new BinTree("E");
BinTree g = new BinTree("G");
BinTree h = new BinTree("H");
BinTree i = new BinTree("I");
BinTree d = new BinTree("D",null,g);
BinTree f = new BinTree("F",h,i);
BinTree b = new BinTree("B",d,e);
BinTree c = new BinTree("C",f,null);
BinTree tree = new BinTree("A",b,c);
System.out.println("前序遍历二叉树结果: ");
tree.preOrder(tree);
System.out.println();
System.out.println("中序遍历二叉树结果: ");
tree.inOrder(tree);
System.out.println();
System.out.println("后序遍历二叉树结果: ");
tree.postOrder(tree);
System.out.println();
System.out.println("层次遍历二叉树结果: ");
tree.LayerOrder(tree);
System.out.println();
System.out.println("F所在的层次: "+tree.level("F"));
System.out.println("这棵二叉树的高度: "+tree.height());
System.out.println("--------------------------------------");
tree.reflect();
System.out.println("交换每个节点的孩子节点后......");
System.out.println("前序遍历二叉树结果: ");
tree.preOrder(tree);
System.out.println();
System.out.println("中序遍历二叉树结果: ");
tree.inOrder(tree);
System.out.println();
System.out.println("后序遍历二叉树结果: ");
tree.postOrder(tree);
System.out.println();
System.out.println("层次遍历二叉树结果: ");
tree.LayerOrder(tree);
System.out.println();
System.out.println("F所在的层次: "+tree.level("F"));
System.out.println("这棵二叉树的高度: "+tree.height());
}
用JAVA语言实现二叉树的层次遍历的非递归算法及查找算法。
分块查找
typedef struct
{ int key;
int link;
}SD;
typedef struct
{ int key;
float info;
}JD;
int blocksrch(JD r[],SD nd[],int b,int k,int n)
{ int i=1,j;
while((knd[i].key)(i=b) i++;
if(ib) { printf("\nNot found");
return(0);
}
j=nd[i].link;
while((jn)(k!=r[j].key)(r[j].key=nd[i].key))
j++;
if(k!=r[j].key) { j=0; printf("\nNot found"); }
return(j);
}
哈希查找算法实现
#define M 100
int h(int k)
{ return(k%97);
}
int slbxxcz(int t[],int k)
{ int i,j=0;
i=h(k);
while((jM)(t[(i+j)%M]!=k)(t[(i+j}%M]!=0))
j++;
i=(i+j)%M;
if(t[i]==k) return(i);
else return(-1);
}
int slbxxcr(int t[],int k)
{ int i,j=0;
i=h(k);
while((jM)(t[(i+j)%M]!=k)(t[(i+j}%M]0))
j++;
if(j==M) return(0);
i=(i+j)%M;
if(t[i]=0)
{ t[i]=k; return(1); }
if(t[i]==k) return(1);
}
int slbxxsc(int t[],int k)
{ int i,j=0;
i=h(k);
while((jM)(t[(i+j)%M]!=k)(t[(i+j}%M]!=0))
j++;
i=(i+j)%M;
if(t[i]==k)
{ t[i]=-1; return(1); }
return(0);
}
顺序查找
#define M 500
typedef struct
{ int key;
float info;
}JD;
int seqsrch(JD r[],int n,int k)
{ int i=n;
r[0].key=k;
while(r[i].key!=k)
i--;
return(i);
}
折半查找
int binsrch(JD r[],int n,int k)
{ int low,high,mid,found;
low=1; high=n; found=0;
while((low=high)(found==0))
{ mid=(low+high)/2;
if(kr[mid].key) low=mid+1;
else if(k==r[mid].key) found=1;
else high=mid-1;
}
if(found==1)
return(mid);
else
return(0);
}
虽然都是C++写的,万变不离其中,JAVA我现在 刚学习,就不献丑了
java 二叉树前序遍历
//类Node定义二叉树结点的数据结构;
//一个结点应包含结点值,左子结点的引用和右子结点的引用
class Node{
public Node left; //左子结点
public Node right; //右子结点
public int value; //结点值
public Node(int val){
value = val;
}
}
public class Traversal
{
//read()方法将按照前序遍历的方式遍历输出二叉树的结点值
//此处采用递归算法会比较简单,也容易理解,当然也可以用
//循环的方法遍历,但会比较复杂,也比较难懂。二叉树遍历
//用递归算法最为简单,因为每个结点的遍历方式都是,根,
//左,右,递归的调用可以让每个结点以这种方式遍历
public static void read(Node node){
if(node != null){
System.out.println(node.value);//输出当前结点的值
if(node.left != null)
read(node.left); //递归调用 先读左结点
if(node.right != null)
read(node.right); //递归调用 后读右结点
}
}
public static void main(String[] args){
//初始化5个结点,分别初始值为1,2,3,4,5
Node n1 = new Node(1);
Node n2 = new Node(2);
Node n3 = new Node(3);
Node n4 = new Node(4);
Node n5 = new Node(5);
//构建二叉树,以n1为根结点
n1.left = n2;
n1.right = n5;
n2.left = n3;
n2.right = n4;
read(n1);
}
}
注释和代码都是我自己写的,如果楼主觉得有的注释多余可以自己删除一些!代码我都编译通过,并且运行结果如你提的要求一样!你只要把代码复制编译就可以了,注意要以文件名Traversal.java来保存,否则编译不通过,因为main函数所在的类是public类型的!
java实现二叉树层次遍历
import java.util.ArrayList;
public class TreeNode {
private TreeNode leftNode;
private TreeNode rightNode;
private String nodeName;
public TreeNode getLeftNode() {
return leftNode;
}
public void setLeftNode(TreeNode leftNode) {
this.leftNode = leftNode;
}
public TreeNode getRightNode() {
return rightNode;
}
public void setRightNode(TreeNode rightNode) {
this.rightNode = rightNode;
}
public String getNodeName() {
return nodeName;
}
public void setNodeName(String nodeName) {
this.nodeName = nodeName;
}
public static int level=0;
public static void findNodeByLevel(ArrayListTreeNode nodes){
if(nodes==null||nodes.size()==0){
return ;
}
level++;
ArrayListTreeNode temp = new ArrayList();
for(TreeNode node:nodes){
System.out.println("第"+level+"层:"+node.getNodeName());
if(node.getLeftNode()!=null){
temp.add(node.getLeftNode());
}
if(node.getRightNode()!=null){
temp.add(node.getRightNode());
}
}
nodes.removeAll(nodes);
findNodeByLevel(temp);
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
TreeNode root = new TreeNode();
root.setNodeName("root");
TreeNode node1 = new TreeNode();
node1.setNodeName("node1");
TreeNode node3 = new TreeNode();
node3.setNodeName("node3");
TreeNode node7 = new TreeNode();
node7.setNodeName("node7");
TreeNode node8 = new TreeNode();
node8.setNodeName("node8");
TreeNode node4 = new TreeNode();
node4.setNodeName("node4");
TreeNode node2 = new TreeNode();
node2.setNodeName("node2");
TreeNode node5 = new TreeNode();
node5.setNodeName("node5");
TreeNode node6 = new TreeNode();
node6.setNodeName("node6");
root.setLeftNode(node1);
node1.setLeftNode(node3);
node3.setLeftNode(node7);
node3.setRightNode(node8);
node1.setRightNode(node4);
root.setRightNode(node2);
node2.setLeftNode(node5);
node2.setRightNode(node6);
ArrayListTreeNode nodes = new ArrayListTreeNode();
nodes.add(root);
findNodeByLevel(nodes);
}
}
二叉树的遍历算法java的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于二叉树的遍历算法图解、二叉树的遍历算法java的信息别忘了在本站进行查找喔。
发布于:2022-11-28,除非注明,否则均为
原创文章,转载请注明出处。